

Outline

- Science
 - Physical mechanisms
 - Some potential targets
- Instrumental
 - How do we measure and calibrate (linear) polarization
 - Cycle 2 details

Physical Mechanisms

- Continuum
 - Synchrotron ultrarelativistic electrons spiralling in B-field
 - Gyro-synchrotron (lower energies)
 - Aligned dust grains minor axis of grain parallel to field
- Line (not Cycle 2)
 - Zeeman splitting
 - Goldreich-Kylafis
 - Masers

Synchrotron polarization with ALMA

- High fractional linear polarization
 - $(3\alpha+3)/(3\alpha+5) \approx 0.7$ for uniform field $(I \propto v^{-\alpha})$
- Optically thin synchrotron emission has a $v^{-0.5}$ or steeper spectrum, and system temperatures/atmosphere are worse at high frequencies, so why observe with ALMA?
 - Resolution (e.g. mm VLBI)
 - Emission is optically thick, scattered or free-free absorbed at longer wavelengths
 - Highly variable polarized emission
 - Faraday rotation is too high at longer wavelengths (across beam or along line of sight)
 - There are real differences in structure between mm and cm (or m) wavelengths

Structural differences?

 Differences in jet polarization are observed between (e.g.) radio and optical bands in M87 (Perlman et al. 1999)

Higher energy electrons trace different field structures?

Frequencies differ by a factor of 40 000

- Rotation of plane of linear polarization as radiation passes through a magnetized (thermal) plasma
- Normal modes are circularly polarized; propagation speeds are different

$$\Delta\Psi_{\mathrm{[rad]}}=\Psi(\lambda)_{\mathrm{[rad]}}-\Psi_{\mathrm{0[rad]}}=\lambda_{\mathrm{[m^2]}}^2\mathrm{RM}_{\mathrm{[rad\,m^{-2}]}},$$

$$\mathrm{RM}_{[\mathrm{rad}\,\mathrm{m}^{-2}\,]} = 812 \int_{0}^{L_{[\mathrm{kpc}]}} n_{\mathrm{e}[\mathrm{cm}^{-3}\,]} B_{z[\mu\mathrm{G}]} \mathrm{d}z_{[\mathrm{kpc}]} \,,$$

Galactic Centre

Can we do this for other accreting systems, using jets as background sources?

Galactic Centre Magnetar

Magnetar near the Galactic Centre

Shannon & Johnston (2013)

 $RM = -6.7 \times 10^4 \text{ rad m}^{-2}$

Lazarian (2007)

Star formation

NGC1333 IRAS 4A Girart et al. (2006) SMA 345 GHz

Magnetic field in star formation ("hourglass" shape after collapse)

B vectors

Mars, 43 GHz, VLA

Description of Polarization

 Monochromatic wave (or a single photon) E-vector is elliptically polarized

Head of E-vector traces an ellipse

Can express in orthogonal linear or right/left circular basis

3 parameters required: 2 axes and orientation of ellipse or 2 linear amplitudes and relative phase

or 2 circular amplitudes and relative phase (+ sense of rotation)

Stokes Parameters

- Stokes (1852)
- Monochromatic wave has $I^2 = Q^2 + U^2 + V^2$

$$\begin{split} I &= A_x^2 + A_y^2 & I = A_r^2 + A_l^2 \\ Q &= A_x^2 - A_y^2 & Q = 2A_rA_l\cos\delta_{rl} \\ U &= 2A_xA_y\cos\delta_{xy} & U = 2A_rA_l\sin\delta_{rl} \\ V &= 2A_xA_y\sin\delta_{xy} & V = A_r^2 - A_l^2 \end{split}$$

- In general have a finite bandwidth, random phases, so $I^2 > Q^2 + U^2 + V^2$
- $A_r A_l \sin \delta_{rl}$ - A_l^2 andom
 - Q and U describe linear polarization; V circular
 - Fractional linear $(Q^2 + U^2)^{1/2}/I$; circular |V|/I
 - Position angle of linear (1/2)arctan(U/Q)

Polarized cross-correlations

How does ALMA measure polarization?

Wire grid (Band 7, 9, 10)

Ortho-mode transducer (Bands 3, 4, 5, 6, 8)

Linearly polarized feeds

ALMA receivers all have linearly-polarized feeds (like WSRT, ATCA; unlike VLA). For an **ideal** system:

$$\mathbf{V}_{ij} = \begin{pmatrix} V_{XX} \\ V_{XY} \\ V_{YX} \\ V_{YY} \end{pmatrix} = \begin{pmatrix} \langle s_{X,i} s_{X,j}^* \rangle \\ \langle s_{X,i} s_{Y,j}^* \rangle \\ \langle s_{Y,i} s_{X,j}^* \rangle \\ \langle s_{Y,i} s_{Y,j}^* \rangle \end{pmatrix} = \begin{pmatrix} I + Q' \\ U' + iV \\ U' - iV \\ I - Q' \end{pmatrix}$$

$$Q' = Q\cos 2\psi + U\sin 2\psi$$
$$U' = -Q\sin 2\psi + U\cos 2\psi$$

 V_{ij} is the vector of visibilities for antennas i and j V_{xx} , V_{yy} are the **parallel-hand** visibilities V_{xy} , V_{yx} are the **crossed-hand** visibilities $s_{x,i}$ is the X polarization signal from antenna i, etc. Q', U' are defined with respect to the feed system Q, U are true Stokes parameters defined on the sky ψ is the **parallactic angle**

In practice, separation between the two linear polarizations is not perfect, and some of polarization X leaks into Y and vice versa. We assume **linearity**.

Machinery for handing this is the measurement equation, which uses Jones matrices.

Here, $s_{x,i}$ is the true X polarization signal for antenna i, $s_{x,i}^{OBS}$ is the corrupted signal J_i is the Jones matrix ODS $\left(s_{x,i}^{OBS}\right) = \left(J_{XX}i - J_{XY}i\right)$

$$\mathbf{s}_{i}^{\text{OBS}} = \begin{pmatrix} s_{X,i}^{\text{OBS}} \\ s_{Y,i}^{\text{OBS}} \end{pmatrix} = \begin{pmatrix} J_{XX,i} & J_{XY,i} \\ J_{YX,i} & J_{YY,i} \end{pmatrix} = \mathbf{J}_{i}\mathbf{s}_{i}$$

This is useful, because J_i can be written as a product of simpler matrices. 18

$$\mathbf{D}_i = \begin{pmatrix} 1 & d_X(\nu) \\ d_Y(\nu) & 1 \end{pmatrix}$$

Leakage

Band 3 D-terms

Band 6 D-terms

Band 7 D-terms

The ghastly details

$$V_{XX} = \exp(2i\rho)[I + Q' + U'(d_{Xj}^* + d_{Xi})]$$

$$V_{XY} = \exp(i\rho)[U' + iV + I(d_{Yj}^* + d_{Xi}) + Q'(d_{Yj}^* - d_{Xi})]$$

$$V_{YX} = \exp(i\rho)[U' - iV + I(d_{Yj} + d_{Xi}^*) + Q'(d_{Yi} - d_{Xi}^*)]$$

$$V_{YY} = I - Q' + U'(d_{Yj}^* + d_{Yi})]$$

$$Q' = Q\cos 2\psi + U\sin 2\psi$$

$$U' = -Q\sin 2\psi + U\cos 2\psi$$

Linearised equations (neglect terms in d² and dV) N antennas and N(N-1)/2 baselines 2N complex d terms per antenna, ρ , Q, U and V to be determined ψ known a priori

Make \geq 3 measurements of polarized calibrator at different parallactic angles assuming that everything is stable.

 \Rightarrow unique determination

The end result

Q U (after calibration) rms a few x 0.01% of Stokes I $_{24}$

Stability over 2 days

Practicalities

- Typical fractional linear polarization 1 10% from synchrotron and thermal emssion
 - Calculate expected polarized flux density
 - Assume calibrate leakage terms to ~0.1%. Calculate spurious polarization from bright sources in the field.
 - Check S/N in Q and U (same calculation as for I in sensitivity calculator)

Cycle 2 Limitations (1)

- Direction-dependent effects have been neglected
 - Have assumed that leakage terms do not vary across the field
 - Response is actually direction-dependent (e.g. deviations from axisymmetry in the receiver optics)
 - In practice, restrict observations to inner FWHM/3 of the antenna beam, where variations are small (accuracy better than 1% in linear polarization anticipated)
 - Therefore also no mosaic
 - In the future, these effects will be calibrated and corrected
- Stokes V calibration not commissioned
 - Use at your own risk

Cycle 2 Limitations (2)

- "Continuum" observations only (TDM). Selected "good" frequencies. 8 GHz bandwidth.
- Band 3, 6, 7
- No ACA, total power
- Observations long enough that leakage terms can be calibrated
 - Nominally 4 observations of calibrator (minimum 3 as above)
 - $\approx 45^{\circ}$ parallactic angle coverage
 - $\leq 40^{\circ}$ from target
 - Observatory will find calibrator, but need to consider parallactic angle range in advance.
 - Once stability is verified, it should be possible to drop (some of) these requirements 28

Parallactic angle

Fast variation for declination \approx latitude; hour angle ≈ 0 (transit close to zenith)