What is this radio interferometry business anyway?

What are you letting yourself in for?

EUROPEAN ARC ALMA Regional Centre || UK

What is useful to know

- Basics of interferometry
- Calibration
- Imaging principles
- What provides detectable sources?
 - ALMA spatial coverage
 - Spectral details: see OT session
- Simulations for ALMA

What is useful to know

- Basics of interferometry
- Calibration
- Imaging principles
- What provides detectable sources?
 - ALMA spatial coverage
 - Spectral details: see OT session
- Simulations for ALMA

sim•u•late ('sim yə,leit)

to intend to deceive; make a pretence of; feign: e.g. to simulate illness:

Friquet under the pretext of having a swollen face which he had managed to <u>simulate</u> by introducing a handful of cherry kernels into one side of his mouth, and had procured a whole holiday from Bazin. **Twenty years after** (Alexandre Dumas)

- Earth rotation aperture synthesis
- Vectors between pairs of baselines sweep out *uv* tracks
 - Record combined signals per sec
- Maximum resolution (synthesised beam) $\theta \sim \lambda / B_{max}$
 - \underline{B} 15 km, λ 1 mm = θ ~14 mas
- Field of view $\lambda/D_{antenna} \sim 20''$
 - Equivalent to single dish resolution

- Earth rotation aperture synthesis
 - Fourier transform ⇔ Dirty Beam
- Sensitivity helped as noise decorrelates *but*
 - Sparse coverage gives sidelobes
- Max. angular scale imageable
 - $\sim 0.6 \ \lambda/B_{min} \sim 8'' \ (\lambda \ 1 \ mm)$
 - no ACA, compact 12-m config

- Combined ϕ depends on δs
- Complex visibility amplitude is sinusoidal function of $\boldsymbol{\phi}$

Earth rotation aperture synthesis

 Telescopes separated by baseline B_{geom}

- Earth rotates
 - Projected separation $b = B_{geom} \cos \theta_0$
- Samples different scales of source
- Additional geometric delay path Δ
 - Remove in correlator

Earth rotation aperture synthesis

(3)

(2)

core

lobe

- Complex visibility amplitude is sinusoidal function of $\boldsymbol{\phi}$

1/06

1/04

Correlation

- Digitise and combine signals in correlator
 - Create spectral channels by adding ~msec time lags
 - Make parallel (and cross) polarizations
 - (another) FT into frequency domain
 - Output averaging determines integration time
- Produces complex visibility data
 - Time series of amplitudes & phases per baseline
 - per polarization, per spectral channel

From interferometry to images

Source

- Fourier transform of complex visibility amplitude and phase gives sky brightness $\sum V_v(u_v,v_v) e^{[2\pi i(uvl + vvm)]} dudv = I_v(l,m)$ $- \text{ or } V(u,v) \Leftrightarrow I_v(l,m) \text{ for short}$
- Sensitivity: $\sigma_{rms} \propto \frac{T_{sys}}{\sqrt{N(N-1)/2} \ \delta v \ \Delta t}$
 - Number antennas (ALMA's huge collecting area!)
 - dv freq. width per image, Δt total time on source

ALMA instrumental calibration

- Pointing corrections before correlation
- Water vapour in the troposphere
 - Refraction: delay to phase of incoming wavefronts
 - Water Vapour Radiometry (WVR)
 - Measure 183-GHz atmospheric line
 - Derive path length corrections at observing v every second
 - Amplitude absorption amd emission
 - System temperature measurements every few min (T_{sys})
- Residual delay and bandpass errors
 - Phase & amplitude corrections as a function of $\boldsymbol{\nu}$
 - Derive from bright astrophysical source
 - Good signal to noise in a single channel
- Planets, large moons, asteroids to set flux scales
- Phase-referencing corrects time-dependent errors

PWV ~0.6, Band 9 raw 0.25 - 2.5 km baselines

Time

Calibration sources: flux density

- Primary flux calibration uses planets, moons, asteroids
 - Models and ephemerides available
 - Mostly negligible polarization

0.05

- Still often have to select short baselines!
- Beware planet/moon atmspheric lines
 - If no Solar System object, use monitored QSO

Phase referencing

- Observe phase-ref source close to target
 - Point-like or with a good model
 - Close enough to see same atmosphere
 - Few 10 degrees (isoplanatic patch)
 - Bright enough to get good SNR quicker than atmospheric timescale $\boldsymbol{\tau}$
 - (after WVR applied)
 - τ 10 min/30 s short/long *B* & low/high v
- Nod on suitable timescale e.g. 5:1 min
 - Derive time-dependent corrections to make phase-ref data match model
 - Apply same corrections to target
 - May correct amplitudes similarly
- Self-calibration works on similar principle

Source structure in uv plane

Baseline length in wavelengths (uv distance)

..5e+06 2e+06 2.5e+06 UVDist_L

3e+06

3.5e+06

Phase errors in 3D

Calibration strategy

- Need Signal to Noise Ratio $\sigma_{ant}/S_{calsource} > 3$
 - per calibration interval per antenna

$$\sigma_{ant}(\delta t, \delta v) \approx \sigma_{array} \sqrt{\frac{N(N-1)/2}{N-3}}$$

- σ_{array} is noise in all-baseline data per time-averaging interval per frequency interval used for calibration
- Have to average in time and/or frequency
 - Bandpass first or time-dependent cal. first?
 - Do not average over interval where phase change $d\phi > \pi/4$
 - Keep polarizations separate if possible in early calibration
- Usually start with bandpass calibration
 - Instrumental artefacts, shallow atmospheric lines...
 - May need to perform time-dependent $\boldsymbol{\phi}$ calibration first

This example: $d\phi < \pi/4$ over inner 50% band

- Bandpass calibrator bright as possible
 - Average inner 50% band, perform time-dependent phase & amp calibration (G1) with solint required for SNR
 - If atmospheric lines, chose channel intervals to avoid
 - **2.** Apply calibration (G1), average all times for freq. dependent phase and amplitude calibration, i.e. bandpass calibration (B1).
 - Smooth every e.g. 20 channels if necessary for SNR
 - G1 is not used any more
- Phase-reference fairly bright source
 - **3.** Apply B1 and perform time-dependent phase calibration (G2) averaging all channels, shortest *dt* for enough SNR
 - Apply B1 for all calibration hereafter, to all sources
 - **4.** Apply B1 and G2 and perform time-dependent amp. cal.
 - Amp calibration needs higher SNR than phase-only; for bright sources you can do it all in step 3.

Effects on imaging

No astrophysical calibration: no source seen

Amplitude and phase solutions: source seen, snr 22

(r)

Phase-only solutions: source seen, snr 15

CASA calibration: Measurement Equation

 $\underline{V}_{ij} = \mathbf{M}_{ij}\mathbf{B}_{ij}\mathbf{G}_{ij}\mathbf{D}_{ij}\mathbf{E}_{ij}\mathbf{P}_{ij}\mathbf{T}_{ij}\mathbf{F}_{ij}\mathbf{S}_{v}(l,m)e^{-i2\pi(uijl+vijm)}dldm + \underline{A}_{ij}$

Vectors		Jones Matrices Hazards						
V isibility = $f(u,v)$	Starting point	Multiplicative baseline error						
<u>I</u> mage	Goal	Bandpass response						
A_dditive baseline	error	Generalised electronic gain						
Scalars	Methods	Dterm (pol. leakage)						
S (manning I to o	hserver	E (antenna voltage pattern)						
polarization)		Parallactic angle						
<i>l,m</i> image plane co	pords	Tropospheric effects						
<i>u,v</i> Fourier plane c <i>i,j</i> telescope pair	cords	Faraday rotation						

Visibility data: Measurement Set format

(Edits are stored here first; backup tables can be made and used to modify)

- Unix-like directory structure with binary data and ascii metadata files arranged in subdirectories
- Additional tables in MS and free-standing:
 - Admin: Antenna, Source etc.
 - Processing: calibration, flags, etc.
- ~interconvertible with FITS; similar image format

Measurement Set MAIN table

•					🗌 Table	Browser							$\Box \times \Box$
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>T</u> ools E <u>x</u> port <u>H</u> elp													
3C277.1C.ms								8					
data		UVW 😽	FLAG	WEIGHT	ANTENNA1	ANTENNA2	EXPOSURE	FIELD_ID	Т	IME		DATA	
ble o	53	[-131860, -138051, 85180.9]	[4, 1	[52, 5	1	5	7.99	0	1995-04-15	5-17:14:22.00 [4, 1] Complex			
đ	68	[-131776, -138090, 85247.1]	[4, 1	[52, 5	1	5	7.99	0	1995-04-15	-17:14			
ds	83	[-131692, -138129, 85313.3]	[4, 1	[52, 5	1	5	7.99	0	1995-04-15	-1-14-38.00 [4, 1] Complex			
wor	98	[-131609, -138168, 85379.5]	[4, 1	[52, 5	1	5	7.99	0	1995-04-1	3C277.1C.ms[53, 21] =			:
key	113	[-131525, -138207, 85445.6]	[4, 1	[52, 5	1	5	7.99	0	1995-04-1	Complex Array of size [4]			
able	128	[-131441, -138246, 85511.7]	[4, 1	[52, 5	1	5	7.99	0	1995-04-1	0			
-	143	[-131357, -138285, 85577.7]	[4, 1	[52, 5	1	5	7.99	0	1995-04-1	0 (-0.16		379 -2 6361	3)
rds	158	[.131273 .138323 856/13 7]	[/ 1	[52 5	1	5	7 99	0	1005-07-1		(-0.104	575,-2.0501	
ywo	Restore Columns Resize Headers								1	1 (0.446854,0.111045)		5)	
PAGE NAVIGATION First << [1/211] >> Last 1 Go							2 (-0.0716612,0.223381)		381)				
								3 (-2.49088,-0.869153)		3)			
										-			

- Some of the columns per visibility measurement

 Correlated amp & phase per baseline per integration
- Data: Complex value per spectral channel for each polarization (XX YY XY YX)

Time jargon

Total integration time = 456357 seconds Observed from <u>15-Apr-1995/17:13:58.0</u> to <u>20-Apr-1995</u> (UTC) Timerange (UTC) Scan FldId FieldName nVis Int(s) 17:13:58.0 - 17:28:38.0 0 3C286 1665 7.99 17:29:38.0 - 18:29:30.0 1 OQ208 6750 7.99 2

17:07:38.0 - 17:09:54.0	8	10 1300+580	270	7.99
17:10:37.0 - 17:17:49.0	9	11 3C277.1	825	7.99
17:18:36.0 - 17:19:56.0	10	10 1300+580	165	7.99
17:20:35.0 - 17:27:55.0	11	11 3C277.1	840	7.99
17:28:42.0 - 17:29:54.0	12	10 1300+580	150	7.99

- Time on all sources
 - Span of observations (might be gaps)
- Flux scale/polarisation calibration scans
- .99 Alternate phaseref/target scans
 - Single integration time

- Estimate hour angle coverage
- An integration is the shortest averaging time in correlated data
- A scan is usually the time between source changes

 The phase-ref/target cycle should be less than the atmospheric coherence time

Polarization jargon: Rx feeds CIRCULAR **ALMA** LINEAR feeds feeds Correlations Left/Right/cross XX, YY, XY, YX correlations Stokes Q =LL RR LR RL (XX - YY)/2Stokes V =Stokes U =(RR-LL)/2(XY - YX)/2Stokes V =Stokes Q =(XY - YX)/2i(RL + LR)/2Polarized intensity P Stokes U = $= \sqrt{(Q^2 + U^2 + V^2)}$ (RL - LR)/2iPolarization angle χ $= \frac{1}{2} \operatorname{atan2}(U/Q)$

Diagrams thanks to Wikipaedia

Brightness temperature

- Brightness temperature $T_{\rm b} = S_{\rm source} \ 10^{-26} \ \lambda^2$ / $2k_{\rm B} \ \Omega$
 - S (Jy) in single dish beam area Ω_{SD} (sr) at $\lambda(m)$
 - Resoved by SD? $\Omega = \Omega_{\text{SD}}$
 - Unresolved? Ω = estimated true (smaller) source size
- Predict ALMA flux density per synthesized beam θ_{b}

$$-S_{\text{ALMA}} = T_{\text{b}} 2k_{\text{B}} \Omega_{\text{ALMA}} / 10^{-26} \lambda^2$$

- Now $\Omega_{ALMA} = \theta_b^2$
- Use Sensitivity Calculator
 - At least $5\sigma_{rms}$ on peak and $3\sigma_{rms}$ on any extended details
- Check ALMA maximum spatial scale
 - Use **OST** or **CASA** simdata to check imaging fidelity

HL Tau on arcmin-arcsec scales

• $T_{\rm b} = [(S/Jy)10^{26} (\lambda/m)^2] \div [2 k_{\rm B} \Omega/{\rm Sr}]$

– Area Ω is *smaller* of (actual size) or (beam size)

• Smooth 5mJy in whole 120" would be $\sim 1\mu$ Jy/1."5 beam

HL Tau on sub-arcsec scales

- D-array lowest contour 0.3 mJy in 1500-mas beam – Peak~3 mJy in ~200 mas diameter \equiv 0.18 mJy in 50-mas
- A-array lowest contour 0.15 mJy in 50-mas beam
 - Missing *smooth, extended* bright flux: missing spacings
 - Missing *sub-asec* flux: small beam \Rightarrow higher T_{b} threshold

Solution: include ACA (also TP)

Cleaning

Fourier transform the visibilities and the uv tracks

(m) /

Cleaning

- Fourier transform the visibilities and the *uv* tracks
- Set a mask to include obvious emission

36"

48''

00''

- CLEAN algorithm identifies brightest pixels
- Store e.g. 10% of each peak as Clean Component

Cleaning

 Iteratively subtract scaled dirty beam at positions of bright pixels

CLEANed image

• Improved signal-to-noise in final image

Residual is just noise
 Note different flux scale

CLEANed image

• Note improved signal-to-noise in image

- NB if snapshot, extended array, narrow channels....
 - Sparse *uv* coverage can limit dynamic range

 Final image is combination of residual and Clean Components convolved with restoring beam

Cleaning and the uv plane

NGC 3256 model coloured by baseline over black data

- *uv* model (colour) is FT of Clean Components
 - 'Major Cycles' subtract model from uv data and remake dirty residual image
- Compare model with data to assess quality
 - Use for further rounds of self-calibration

Weighting

- Each visibility has a weight:
 - Intrinsic, for same t_{int} , T_{sys} etc.:
 - ACA baseline has noise $12^2/7^2 \times 12$ -m baseline
 - Single 12-m TP dish has noise $\sqrt{2}~\times$ 12-m baseline
 - Different N_{samples} per averaged integration/channel
 - Variance of calibration solutions
- Weights can be adjusted further during imaging
 - Grid samples in uv plane
 - Natural: Original samples per cell (empty between)
 - Maximum sensitivity to extended structure
 - Uniform: Extrapolate uniformly
 - Finest resolution, worse noise
 - Intermediate (robust parameter)
 - Change resolution $\leq 2x$ at cost of higher noise

Weighting

- Natural:
 - 110-mas resolution,
 3σ 51
 μJy/bm

Uniform: – 80-mas resolution, 3σ 63 μJy/bm

HL Tau Greaves+'07

- Weights can be adjusted further during imaging
 - Grid samples in uv plane
 - Natural: Original samples per cell (empty between)
 - Maximum sensitivity to extended structure
 - Uniform: Extrapolate uniformly
 - Finest resolution, worse noise
 - Intermediate (robust parameter)
 - Change resolution $\leq 2x$ at cost of higher noise

Simulating interferometry data

- CASA tasks
 - simobserve, simanalyse
 - Any array if antenna configs provided
 - Detailed parameters
 - simalma
 - Tailored for ALMA
- Observing Support Tool
 - Based on CASA library, results should be same
 - Web interface, limited inputs
 - Less flexible but easier to use
- Why simulate?
 - Effects of interferometer sampling large structures
 - Dynamic range limitations
 - Mosaicing
 - **But** check predicted noise with sensitivity calculator

Input for simulations

- See http://almaost.jb.man.ac.uk/help/
 - FITS image
 - Required keywords (script available to check):
 - BUNIT, CDELTn, CROTAn, CDn_n, CTYPEn, NAXIS, NAXISn
 - Declination
 - Very high/low Dec:
 - Elongated synthesised beam
 - Shadowing

Input for simulations

- Bandwidth, frequency etc.
 - Line: OST handles a single channel only
 - Continuum: OST can adopt optimum place in band
 - NB bands 3,4,6,7,8 full b/w gap between sidebands

- Automatically mosaics if required by input size
 Crep large input if you only need a single pointing
 - Crop large input if you only need a single pointing!
- Resolution: Cycle 2, select array(s) directly
- Peak μ /m/Jy/pixel (to rescale input)
- Time needed to reach sensitivity
- Add noise
 - OST does not simulate phase/amp correction!

Cycle 2 resolution (scales @100 GHz)

Cycle 2 examples (scales @100 GHz)

- Data for each array supplied ³⁰ separately by OST ²⁰
 - Adjust weights when combining arrays
 - Further modify resolution by chosing degree of uniform/natural weighting in imaging
- No unique map
 - Vary combinations to emphasize regions of interest
 - Higher resolution can mean ²⁰ higher noise as well as ³⁰ resolving-out extended ⁴⁰ structure ³⁰

Structure scales

- JCMT single-dish mosaic of source at 11 kpc
 - 7".5 pixels
 - Field of view 150"
 - Peak 100 Jy/ 7".5 pixel
 - -354 GHz = λ 0.85 mm

Structure scales

- JCMT source at 11 kpc
 Peak 100 Jy/ 7".5 pixel
 - -354 GHz = λ 0.85 mm
- ALMA field of view
 - 1.2 x λ / 12 ≈ 18¹
 - 12-m dish primary beam
- ALMA synthesized beam
 - λ / longest baseline $~\bullet$
 - Compact array: 1"
 - Intermediate: 0".45
- Largest spatial scale
 - λ / shortest baseline
 - Compact array λ/14≈7.6"
 - Intermediate $\lambda/21 \approx 5.2$ "

ALMA observations at 11 kpc

- Source original size 150"
 ALMA mosaic
- Peak S_{JCMT} 100 Jy/pixel
- ALMA compact config
 - Synthesised beam θ_{bc} 1"
 - Expect peak 100 (1/7.5)² = 1.8 Jy/beam?
 - Largest angular scale 7.6"
 - ~Input pixel!
- Flux which is *smooth* on JCMT scales is ~invisible!
 - Standard ALMA simulation fails

ALMA observations at 11 kpc

- Source original size 150"
 ALMA mosaic
- Source original peak 100 Jy ALMA compact config
 - Synthesised beam $\theta_{bc}\mathbf{1}^{\prime\prime}$
 - Expect peak 100 (1/7.5)² = 1.7 Jy/beam?
 - Largest angular scale 7.6"
 - ~Input pixel!
- Flux which is *smooth* on JCMT scales is ~invisible!
- Small-scale details may appear
 - But only if you have added them to the model!

d=55 kpc

- JCMT field 30", distance d = 55 kpc
 - Pixel p = 7".5x 11/d = 1".5
 - $-S_{\text{JCMT}} 100 \times (11/d)^2 = 4 \text{ Jy/pix}$
- ALMA compact $\theta_{bc} = 1''$
 - 7 mosaic pointings
 - $-S_{ALMA} = S_{JCMT} \times (\theta_{bc}/p)^2 \sim 1.8 \text{ Jy/bm}?$
 - Actual peak ~ 0.4 Jy/beam
 - Large scale flux still missing

d=55 kpc

- JCMT field 30", distance d = 55 kpc
 - Pixel p = 7".5x 11/d = 1".5
 - $-S_{\text{JCMT}} 100 \times (11/d)^2 = 4 \text{ Jy/pix}$
- ALMA compact $\theta_{bc} = 1''$
 - 7 mosaic pointings

$$- S_{ALMA} = S_{JCMT} \times (\theta_{bc} / p)^2 \sim 1.8 \text{ Jy/bm}?$$

d=440 kpc

• JCMT field 30", distance d = 440 kpc

- Pixel
$$p = 7$$
".5x 11/d = 0".1875

- Stot_{JCMT} ~ 2.2 Jy

- ALMA intermediate $\theta_{bi} = 0.45''$
 - Total model ~ largest angular size 5".2
 - Well within field of view
- ALMA recovers all 2.2 Jy
- e.g. use Galactic single dish YSO model, for SFR in nearby galaxy seen with ALMA

Noise

- Input is noiseless model?
 - Select PWV appropriate for observing band
- Input has smooth noise σ_{in} ?
 - e.g. well-calibrated single-dish/optical etc. image
 - Estimate likely ALMA noise σ_A (sensitivity calculator)
 - Reduce added noise so that $\sigma_{added}{}^2$ + $\sigma_{in}{}^2$ $\,\sim\,\sigma_{A}{}^2$
- Input is interferometry image?
 - Beware re-sampling a poorly-sampled image!

In conclusion...

- Decide what you want to observe science goal!
 - What frequency (and channel width, for lines)?
 - What angular resolution?
 - Largest smooth angular scale within source
 - OT will advise if you need to combine arrays
 - Field of view will you need a mosaic?
 - What flux density per ALMA synthesised beam?
 - Detection experiments $\geq 5\sigma_{rms}$ noise
 - Sensitivity calculator/OT roughly reasonable time?
- Find an input FITS model
 - Image at another wavelength, theoretical model...
 - Rescale size, brightness as required
 - Details on similar scales as you hope ALMA will see
 - Read the OST Help and simulate!

What ALMA data do you get?

Image cubes for principal science target channels

Science products + info always delivered to PI

+ Visibility data sufficient to re-do processing in CASA subject to what was available when observations were taken.

All ASDM & FITS images available from Archive

Information and processing summary Data processing scripts

+ any or all of: ASDM (one per EB)

Flag tables

Calibration tables

Calibrated MS

ALMA data conventions

- Scheduling Block: self-contained observation series
 - Short pointing, flux scale, bandpass, (pol.) cal scans
 - ~20-30 mins alternating between target(s)/ph ref(s)
 - Including multiple mosaic pointings
 - Repeat Execution until desired sensitivity is reached
 - All in same spectral and array configuration
 - Each EB produces one ASDM (ALMA Science Data Model) with binary data and lots of metadata
- Initial data processing (calibration, editing) per-EB
 Convert ASDM to Measurement Set
 - Combine EBc for final target imagine
- Combine EBs for final target imaging
- May also combine different SBs e.g. ACA+main

Data organisation for a project

Individual scheduling block

Data reduction summary

- Initial steps common to most data sets
 Standard procedures usually reliable
- Likely to want to self-calibrate

Re-make images at different resolutions etc.

