The ALMA Observing Tool Cycle-2 Proposal Submission

Andy Biggs
ALMA Regional Centre, ESO

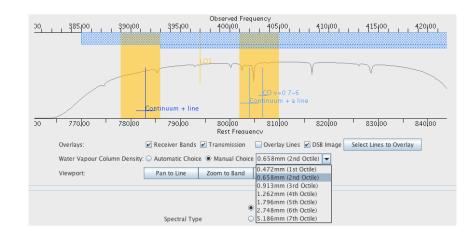
Overview

- The OT is used for
 - preparation of ALMA proposals
 - the resultant observing programs (not covered in this talk)
- Two design goals
 - Detailed knowledge of radio/submm interferometry should not be necessary to apply for ALMA time
 - Expert users and observatory staff should be able to create any kind of observing program
- Solution
 - Scientific requirements are captured in Science Goals (SGs)
 - Technical information contained in Scheduling Blocks (SBs)
 - OT automatically converts Science Goals into Scheduling Blocks

Installation

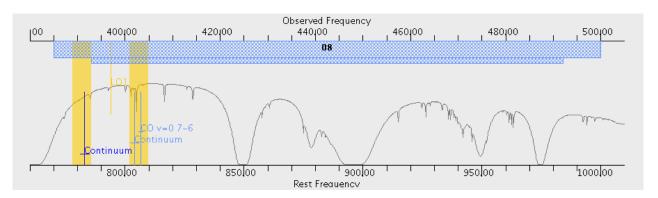
- The OT is a Java-based application
 - Must be downloaded to one's computer
 - User must have Java 6 or 7 installed
- Java Web Start is recommended
 - One-click installation (from Science Portal)
 - Updates automatically
 - Tarball also available (inc. Linux version with own Java)
- Troubleshooting guide available in Science Portal
 - http://almascience.eso.org/call-for-proposals/observing-tool/troubleshooting

Proposal Creation

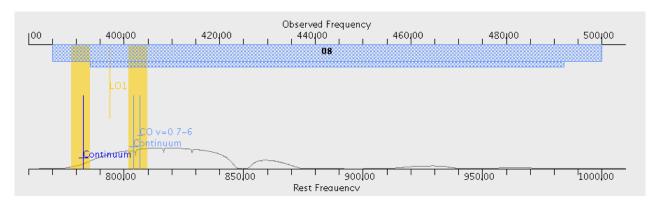

- Proposal preparation and submission is referred to as Phase 1
- Include usual proposal details
 - PI and co-I names, abstract, scientific category, keywords, ...
 - Attach scientific justification as PDF
 - This should all be very straightforward
- Science Goals describe the scientific requirements
 - Angular resolution, largest angular scale -> required configurations
 - Desired sensitivity, frequency, bandwidth -> required time
- No limit on number of SGs per proposal

Sensitivity request

- ALMA users request a sensitivity, not an amount of time
 - Different to most other telescopes
 - Due to large and variable atmospheric absorption
 - ALMA guarantees the requested sensitivity
- SB will be repeated until sensitivity is achieved
 - QA2 checks that this is the case

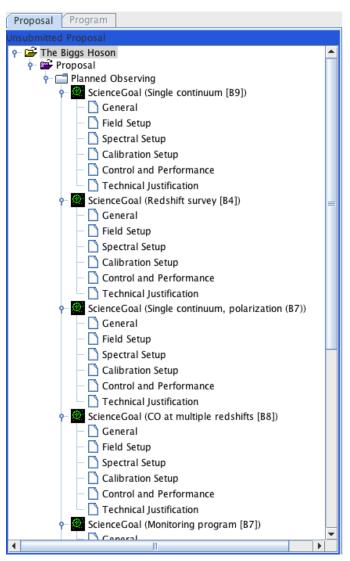

Precipitable Water Vapour

- Water vapour is bad
 - Absorbs astronomical signal
 - Re-radiates, increasing T_{skv}
 - Changes rapidly with time



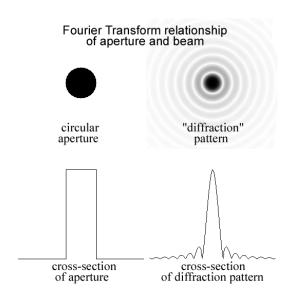
- Weather characterised using PWV octiles
 - PWV = Precipitable Water Vapour
 - 1st octile: expect PWV ≤ 0.472 mm 12.5% of the time
 - 2nd octile: expect PWV ≤ 0.658 mm 25% of the time, etc.
- OT chooses appropriate octile based on requested frequencies
 - Can be changed, but for comparison only
- SB will be repeated until sensitivity is achieved

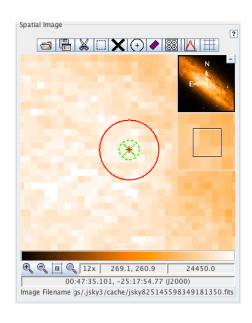
Atmospheric Transmission


Band 8 in 2nd octile – assumed weather conditions

Band 8 in 7th octile – hopefully never used!

Science Goal

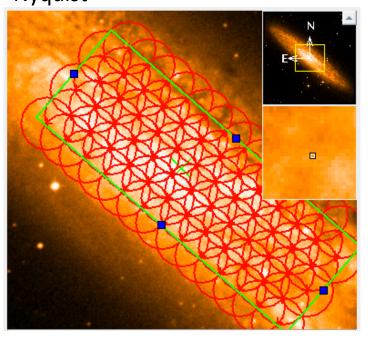

- A Science Goal contains 6 "nodes"
 - General (optional description)
 - Field Setup
 - Spectral Setup
 - Calibration Setup (can probably ignore)
 - Control and Performance
 - Technical Justification (new!)

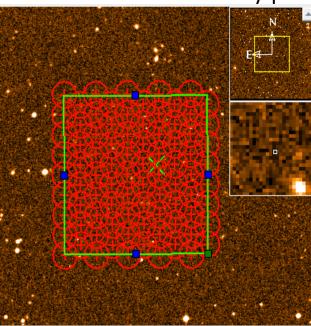


Field Setup

- Each source can be observed as
 - Individual pointings (i.e. ≥1, set manually by user)
 - Pipeline will process separately unless "custom mosaic" ticked
 - 1 Rectangular field
 - OT automatically calculates a 12-m (and 7-m) mosaic pattern
 - Pointings will always be mosaiced together by Pipeline
- Maximum of 150 pointings per Science Goal
- All pointings must lie within 10 degrees of each other

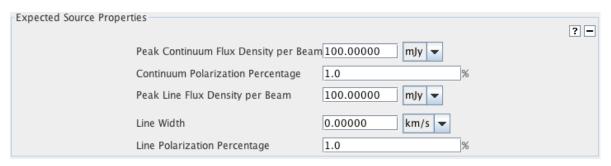
Antenna Beamsize / FOV





- Each antenna has an approximately Gaussian beam
 - OT assumes FWHM = $1.2 \lambda / D$ where D is dish diameter
 - ≈ 1 arcmin at Band 3, ≈10 arcsec at Band 9
 - Sets the field of view of the observation
 - Only achieve requested sensitivity at centre of pointing
 - Dashed circle on spatial visualizer shows 1/3 FWHM

Mosaicing

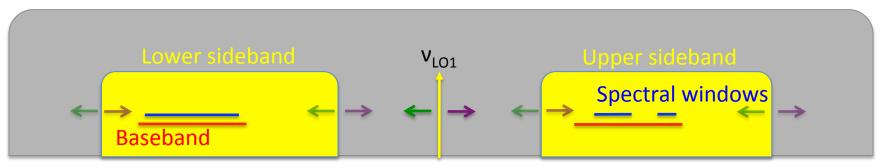

Nyquist Non-Nyquist

- Large sources must be mosaiced!
 - Overlapping produces more uniform sensitivity
- Nyquist sampling is the default ($\approx 0.5 \lambda / D$)
 - Required for large sources
 - Point sources can use larger separations (≈ 0.7-0.8 λ / D)

Expected source properties

- Various source properties must be entered
 - Flux density (line and/or continuum)
 - Line width (usually given in km/s)
 - Polarization (given in %)
- Enter the most challenging measurement
 - Narrowest line, weakest source component, etc.
- Values will be used for Technical Assessment
 - Reappear on Technical Justification node
 - Must be entered for all sources

Spectral Setup

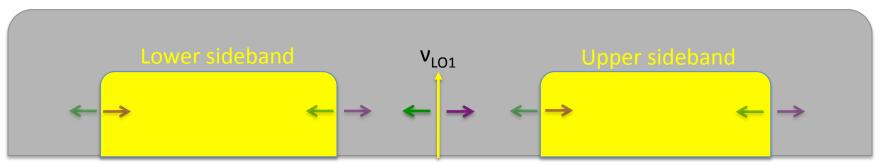

Three choices

- Spectral Line
 - Most general interface
- Single Continuum
 - Shortcut to widest-bandwidth, low spectral-resolution mode
- Spectral Scan
 - Shortcut to multi-tuning, contiguous frequency-coverage mode

Problems

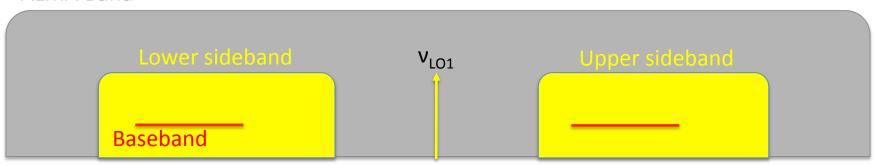
- ALMA backend is fairly complicated
- ALMA correlator is very flexible

ALMA Backend basics

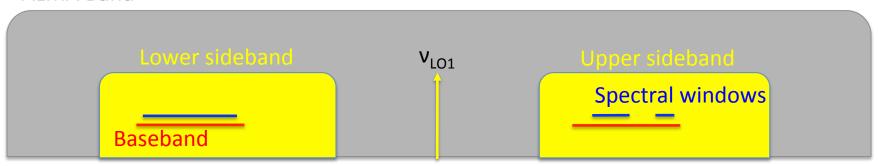


- User defines <u>Spectral Windows</u>
 - Central frequency, bandwidth, spectral resolution
- Spectral windows lie within <u>Basebands</u>
 - Each baseband is 2-GHz wide
- Basebands lie within the receiver <u>Sidebands</u>
 - Each receiver has two sidebands
 - Widths and separations of sidebands vary by receiver

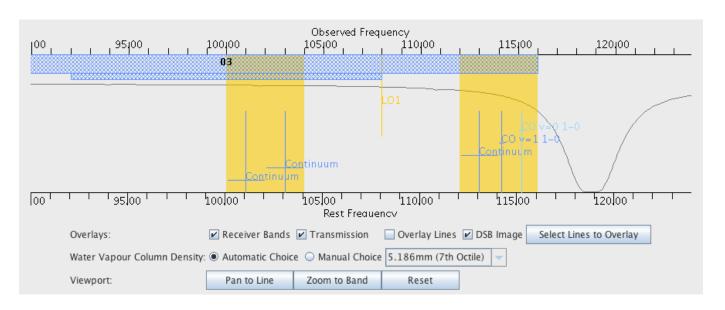
Spectral Concepts: Bands


- Each receiver can potentially detect a fixed range of frequencies
 - Band 3: 84-116 GHz
 - Band 9: 602-720 GHz

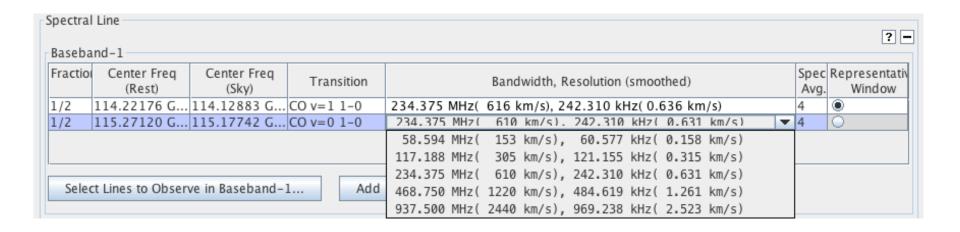
Spectral Concepts: Sidebands


- At any one time, a receiver can only detect a fraction of a band
- The available frequency space is restricted to two sidebands
- Their location within the band is set using v_{LO1}
 - v_{LO1} = first local oscillator frequency
- Sideband widths and separations depend on band
 - Band 3: width = 4 GHz, separation = 8 GHz
 - Band 9: width = 8 GHz, separation = 8 GHz

Spectral concepts: Basebands

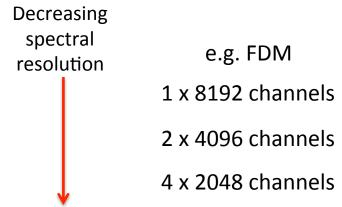

- Basebands then select a desired fraction of a sideband
- Up to four basebands are available
- Each baseband
 - has a fixed width of 2 GHz (max bandwidth = 8 GHz)
 - can be placed anywhere within a sideband (must fit completely)
 - can overlap
- Baseband signals are fed into the correlator

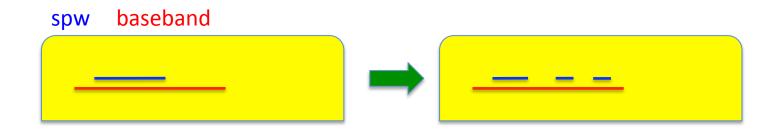
Spectral concepts: Spectral windows


- Finally...
- The correlator samples each baseband using spectral windows
- Each spectral window (spw)
 - has a variable width (59 MHz 2 GHz)
 - can be placed anywhere within a baseband (must fit completely)
 - can overlap (wouldn't normally do this)
 - can be split into multiple regions

Spectral Setup help

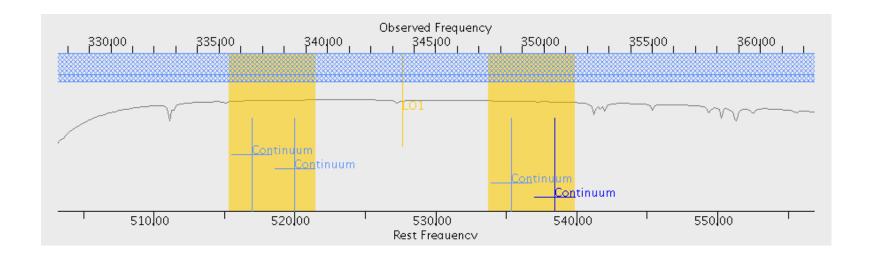
- Don't panic!
 - A user only sets the spectral window frequencies
 - Tuning (setting of basebands and sidebands) is done automatically
 - OT includes a spectral visualizer
 - For illegal setups the sidebands are coloured grey
 - Setups that are illegal cannot be submitted


Correlator modes

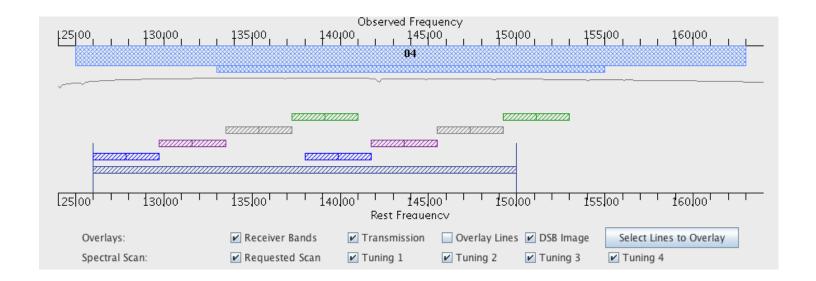

- A spw can use one of two types of correlator mode
 - High spectral resolution (FDM)
 - 8192 channels, bandwidths between 59 and 1875 MHz
 - Low spectral resolution (TDM)
 - 256 channels, fixed bandwidth of 2 GHz
 - Only central 1875 MHz is usable

Polarization

- Three options available
 - Single: hardly ever required
 - Dual: maximum sensitivity (default)
 - Full: for detecting linear polarization
- Full-polarization restrictions
 - Single-continuum setups only
 - Band 3, 6 and 7 defaults only
 - No ACA
 - Detection of circular polarization not officially supported at Cycle 1

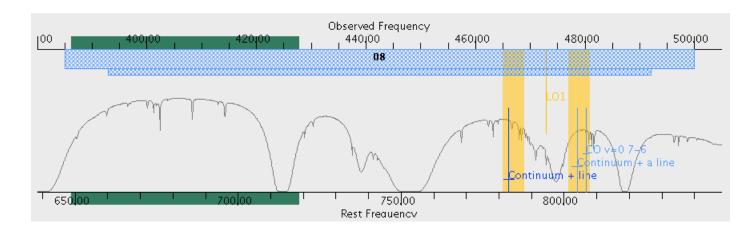

Multi-region modes

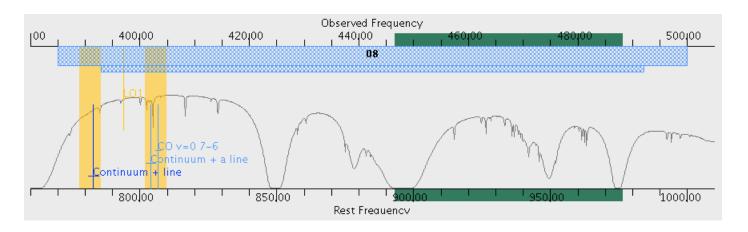
- Each Baseband can use a single correlator mode
 - For example: 937.5 MHz / 244.141 kHz (4096 channels)
- Each mode can be split into up to 4 spws
 - Each must have the same spectral resolution
 - Must set the "Fraction" parameter for each
 - For example:
 - 1 x 468.75 MHz / 244.141 kHz / fraction=½ (2048 channels)
 - 2 x 234.375 MHz / 244.141 kHz / fraction=¼ (1024 channels)


Single Continuum

- Shortcut to a maximum-bandwidth setup
 - 4 2-GHz wide spectral windows
 - 64-256 channels, depending on polarization selection (TDM)
- Each band has a default set of spws
 - Chosen so as to maximise sensitivity

Spectral Scan

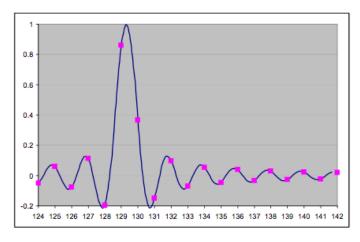

- Shortcut to a multi-tuning setup
 - Enter start and stop <u>observed</u> frequencies plus correlator mode
 - Only a selection of the widest modes are available
 - OT will use a maximum of 5 tunings to cover this range

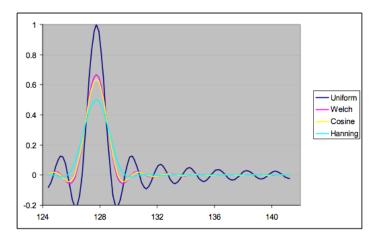


Velocities/tunings

- Only one Spectral Setup allowed per SG
 - One set of rest frequencies
- Sources can have different velocities
 - Tuning is (obviously) done with sky frequencies
 - It must be possible to find a tuning for each set of sky frequencies
- Maximum of 5 tunings per SG allowed
 - OT has an algorithm to check how many tunings are required
 - Similar velocities can share the same tuning
- Only one ALMA band allowed

Multiple Velocities/Tunings

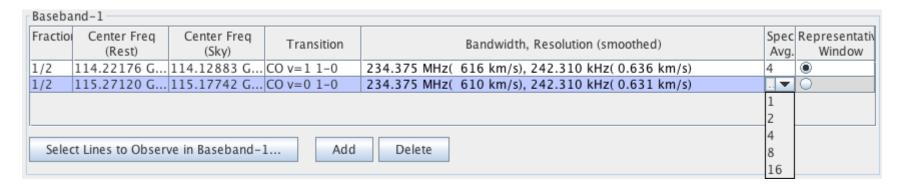

Spectral windows are closer together for a higher redshift source


Representative Frequency

Source Name	Velocity		System	Representative Frequency (Sky)
V1	14989	km/s	Isrk	403.3259 GHz
V2	13947	km/s	Isrk	431.3646 GHz
V3	12134	km/s	Isrk	480.1499 GHz

- Defaults to centre of "Representative Window"
 - Spectral window of greatest interest
 - Can be moved anywhere within that spw
- Time estimates are calculated at the RF
- For "Spectral Line" RF is a rest-frame quantity
 - Converted into the sky (observed) frame for each velocity
 - Be careful in bands with variable atmospheric transmission!

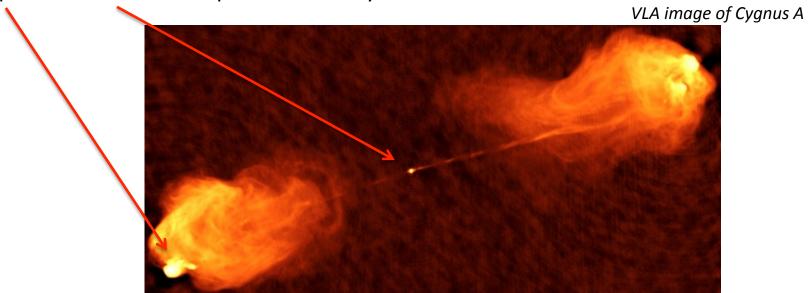
Hanning smoothing



Figures courtesy of R. Hills

- Each spectral line has a sinc(x) form
 - Caused by limitations of correlator
- Hanning smoothing is applied by default
 - Reduces ringing in spectra
 - Reduces spectral resolution (x 1.67 compared to no smoothing)
- Correlator is capable of other smoothing functions
- ACA correlator has a sinc²(x) form

Spectral averaging


- Often desirable as native resolution can be very high
 - 2-GHz wide spw has either 128 or 4096 channels (dual pol)
 - High data rates must be justified!
- Not available with TDM
- Spectral averaging is applied after Hanning smoothing
 - Final resolution is not linearly proportional to averaging factor

Control & Performance

- Interferometry array characteristics
 - Longest baseline (L_{max}) sets angular resolution
 - Shortest baseline (L_{min}) sets max recoverable scale
 - An object of this size can be reliably imaged
- Configurations are chosen such that
 - $-\lambda/L_{max}$ < requested angular resolution
 - $-\lambda/L_{min}$ > requested largest angular scale
- Up to 2 12-m configurations are possible
- If ACA is required, get 7-m and TP arrays
 - TP not available for Band 9 or single continuum

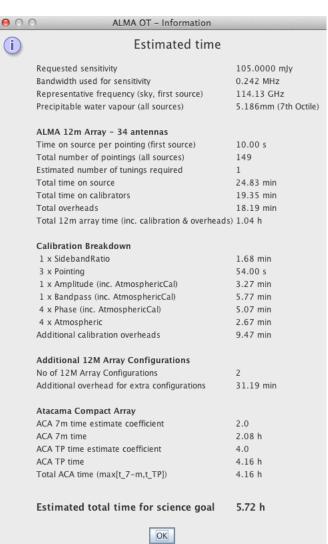
Source angular scales

Hot spots and core are compact – "seen" by all baselines

Lobes are much larger – only shorter baselines see this emission

If the short baselines were missing, the lobes would be completely invisible!

Time Estimate


- Time estimate shown in detail for most-extended 12-m array
 - Include calibration and overheads
- Other arrays multiple of this time

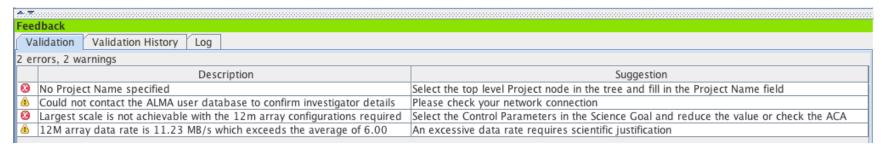
$$- t_{12-m \text{ (com.)}} = 0.5 \text{ x } t_{12-m \text{ (ext.)}}$$

$$- t_{7-m} = 2 \times t_{12-m \text{ (ext.)}}$$

$$- t_{TP} = 4 x t_{12-m (ext.)}$$

- Assume TP and 7-m observe simultaneously
 - $t_{ACA} = max(t_{7-m}, t_{TP})$

Technical Justification


- Now a separate Science Goal node
 - At Cycles 0 and 1, this was part of the Scientific Justification
- The following are shown on a single page
 - Important input parameters (sensitivity, channel width, ACA use, etc.)
 - Source properties (including SNR estimations)
 - Non-standard choices
 - Box for 4000 characters of plain text
- The idea is to help improve the writing of technical cases

Validation and Submission

- A project should be validated before submission
 - "Tick" button on Tool bar

- Feedback panel will display
 - Errors (<u>must</u> be fixed)
 - Warnings (not necessarily a problem)
- Validation happens automatically during submission
- Re-submission allowed
 - Maybe best to submit early and work with version in archive

Known Issues

You are here: Home > Documents & Tools > Cycle 2 > Known Issues

Known Issues

Known Issues affecting the Cycle 2 release of the ALMA Observing Tool

Issue	Description	Resolved?	Deployed?
C1_001	Although it is indicated that copy and paste operations in a Mac use the "command" key, often the "control" key is required, particularly for text copy/paste.		
C1_017	The tarball version of the OT with its own Java is 32-bit only. A 64-bit version should be provided.		
C1_023	Calibration searches may crash due to problems with the database. Reducing the number of results may avoid the problem.		
C1_032	Leaving the OT open for days at a time can cause an error upon saving. Saving to another file, closing the OT and re-opening produces a "ZLIB input stream" error i.e. the project is unreadable. This issue is yet to be satisfactorily characterised.		
C1_037	The OT will crash if, within the same session, the display is changed between a laptop's own screen and an external screen (and vice versa). This has only been reported on a Mac running Java 7.		

- There are some known bugs with the Cycle-2 OT
 - Time estimates for polarization and spectral scans were in error
- A list is kept on the Science Portal
 - http://almascience.eso.org/documents-and-tools/cycle-2/known-issues
- An OT update was released on 18 November