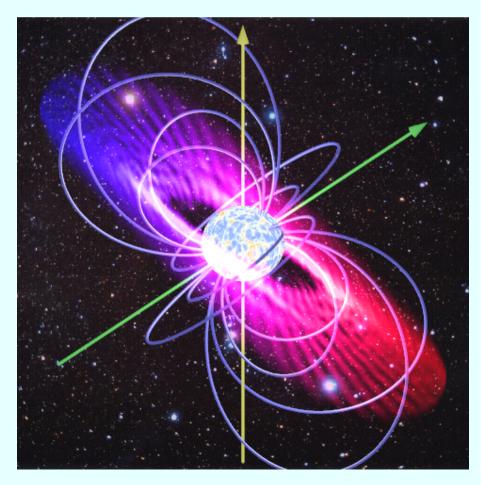
The UVMag space project

Coralie Neiner (LESIA, Paris-Meudon Observatory, France) and the UVMag consortium

 \rightarrow Stellar formation, evolution, structure and environment of all types of stars thanks to the study of their surface, wind and magnetosphere with UV+optical spectropolarimetry

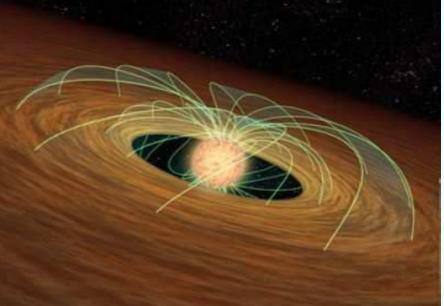
The UVMag mission project

 \rightarrow A medium size space mission with a 1.3m telescope equipped with a UV+optical spectropolarimeter


- Currently under R&D study funded by CNES
- To be proposed as a M-size mission at ESA
- Instrument also proposed for EUVO
- PI: C. Neiner
- Science consortium: ~50 members from ~30 institutes from 11 countries (Belgium, Brazil, Canada, Chile (ESO), France, Germany, Ireland, Switzerland, Sweden, UK, USA)
- Payload consortium: France+Belgium for R&D

A UV and optical spectropolarimeter

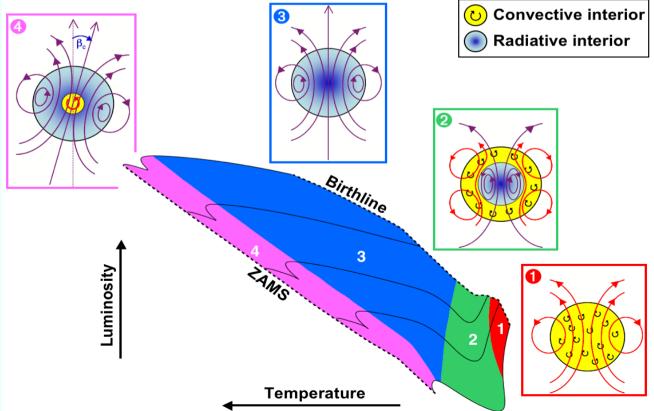
• Spectropolarimetry in the UV allows to study the stellar wind, magnetosphere, chromosphere...


• Spectropolarimetry in the optical allows to study the magnetic field at the stellar surface, chemical spots...

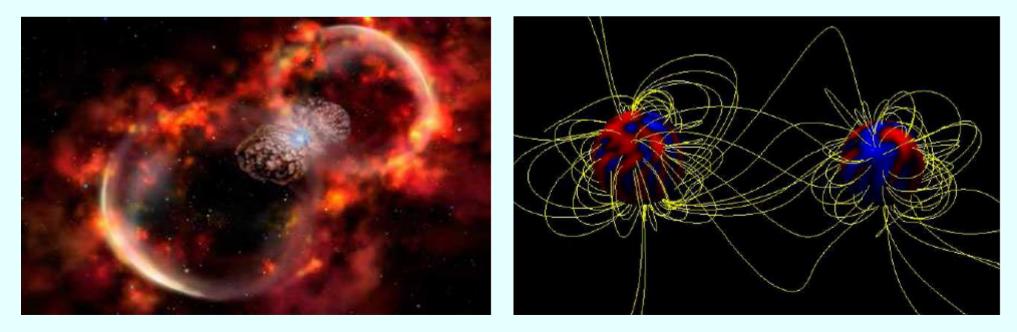
 \rightarrow Spectropolarimetry in the UV+optical over a rotation period allows to reconstruct the full 3D maps of the star from its surface to its environment

Science drivers: stellar formation and early phases

- Statistical properties of the various populations of stars? Incidence of magnetic fields? Properties of wind and mass loss (e.g O stars)?
- What causes the dichotomy of A stars: either with sub-G magnetic fields (Vega-like) or fields above ~300 G (Ap/Bp stars)?
- Timescales over which magnetospheric accretion stops in PMS stars?
- Why do T Tauri stars rotate slowly? How does the disk locking mechanism work?
- What happens during the magnetic stabilization phase at the start of the PMS? How does an abrupt change of magnetic obliquity affect the star and its environment?


Science drivers: stellar structure

- Conditions to develop a dynamo magnetic field?
- Interplay between magnetic fields, rotation and wind in the activity of stars (e.g. impact of angular momentum loss due to the magnetically-driven wind on dynamo of cool stars which in turn affects the wind?)
- Conditions for OB stars to become Be stars? Causes of LBV outbursts? What happens when a star reaches critical rotational velocity? Origin of γ Cas stars behavior?
- How do the solar and stellar cycles work? Influence by the solar/stellar environment? Respective impacts of the global and small-scale solar-type dynamos?
- Explanation to diversity of magnetic properties of M dwarfs? How is their magnetism related to that of planets, brown dwarfs and of solar-type stars?


Science drivers: stellar evolution

- Role of magnetic field, rotation, metallicity and mass loss in the evolution of stars? In particular for their late stages (white dwarfs, supernovae, neutron stars, black holes, γ-ray bursts)?
- What allows a fossil magnetic field to survive the various phases of stellar evolution?
- How strong was the solar magnetic field when the Sun was young? How will it evolve?

Science drivers: stellar environment

- How does a stellar magnetic field influence mass loss, in particular wind clumping and a circumstellar disk/clouds?
- Impact of magnetospheric interactions on binary stars? Tidal effects?
- Impact of solar dynamo on Earth, and how does it evolve with time?
- Star-planet magnetospheric interactions?
- How do decretion disks of Be stars build up? How are they destroyed? How do instabilities in accretion disks develop?

Requirements

Specification	Requirement	Goal
UV+optical spectral range	117-320+ 390-870 nm	90-1000 nm
Resolving power in UV range	25000	100000 and 2000
Resolving power in optical range	35000	80000
S/N in UV range	100	200
S/N in optical range	100	300
Spectrograph efficiency in UV	5%	10%
Spectrograph efficiency in optical	10%	25%
Polarization	V in lines	QUV in lines and in continuum
Instrumental polarization	3%	1%
Polarization accuracy	0.3%	0.1%
Polarization sensitivity	$3 \ 10^{-5}$	$1 \ 10^{-5}$
Accuracy in radial velocity	1 km s^{-1}	0.3 km s^{-1}
Pointing stability	0.5 arcsec	0.2 arcsec
Target magnitude	V=3-10	V=2-15
Survey stars (sample 1)	4000	8000
Time per survey star	20 min	30 min
Targeted stars (sample 2)	50	100
Time per targeted star	4 weeks	6 weeks (4+1+1)
Mission duration	4 years	12 years

Targets

- 50 stars observed continuously over 2 rotation periods → 3D maps
 + solar-like stars re-observed every year → stellar cycles
- 4000 stars observed twice \rightarrow survey

1	\frown		1	\frown	
Spectral type	• V=3-1	V = 2 - 15	Magnetic rat	te Magnetic V=3-10	Magnetic V=2-15
0	428	1823	6%	26	109
В	19940	42891	6%	1196	2573
А	53143	102442	10%	5314	10244
F	61867	105487	20%	12373	21097
G	55780	97365	20%	11156	19473
Κ	88358	121052	20%	17672	25421
М	10276	18367	20%	2055	3673
Be stars	1225	1705	1% — — —	-12 – – – – – –	17
Herbig Ae/B	e 44	60	10%	4	6
M dwarfs	94	693	50%	47	347

Additional science

With no change in the design:

- Structure and properties of ISM: local interstellar medium, H2 in diffuse molecular medium
- White dwarfs and cataclysmic variables: weak fields, accretion flows
- Exoplanetary magnetic fields: bow shocks, field strength of the planet
- Atomic physics in the UV

With Target of Opportunity mode:

Novae: properties (abundances, structure, mass) of ejecta in UV

With better polarisation precision:

• Exoplanetary atmospheres: chemical and thermal structure of upper layers of atmospheres (Rayleigh diffusion)

Conclusions

UVMag project:

M-size space mission equipped with a UV+optical spectropolarimeter to study stellar formation, structure, evolution and environment + possible additional science

→ See http://lesia.obspm.fr/UVMag

International science consortium + ongoing R&D study for the spectropolarimeter

→ Want to join? Contact me! (coralie.neiner@obspm.fr)