MESSIER Unveiling galaxy formation

David Valls-Gabaud on behalf of the MESSIER consortium

Challenges in UV astronomy ESO - 2013 Oct 09

Two driving science cases

for critical tests of the ΛCDM paradigm on non-linear scales

How galaxies accrete their satellites ?

What are the properties of the cosmic web ?

Mission summary

To understand the galaxy formation processes by:

- measuring the local accretion history of baryons
- characterising the cosmic web : low-density outskirts, Lyman-α emission
- measuring the diffuse light in clusters of galaxies
- measuring the cosmological UV/optical background

Multi-band all-sky survey down to $SB(V) \sim 33$ mag arcsec⁻²

Payload 45 cm mirror, f/2.5, off-axis design Stable PSF with very low wings
8 4K×4K CCD, scale : I arcsec/pixel Drift scan mode (TDI) : <0.05% flat-fielding
6 optical + two UV filters: ugrizW IB200 NB200

Formation history of galactic haloes

Northern Sky

Southern Sky

TRIANGULUM STREAM

SAGITTARIUS STREAM

Can we detect the fossil record of past accretion events in the Galaxy and beyond ?

SDSS DR8 / Bonaca, Giguere, Geha

Key prediction of the CDM paradigm (over?) abundance of dwarf satellites

Leo T

And IV

Ground-based

Ricotti (2011)

Font et al. (2008)

Most predicted key structures lie at SB below 30 mag arcsec⁻² Unreachable from the ground

Cooper et al. (2013)

Selection : metal-poor RGB stars

> PAndAS collaboration 2011-2014 McConnachie et al. (2009) *Nature*, 461, 66

.

0

[...] galaxies are like icebergs and what is seen above the sky background may be no reliable measure of what lies underneath.

M. Disney (1976)

Surface brightness completeness issues

The paradigmatic case of NGC 5907

0.5m f/8.1 Martinez Delgado et al. 2008 SDSS Miskolczi et al. 2011 CFHT Ibata et al. 2011 Signal received by an unresolved source:

$$F_{\rm point} \propto A \ \epsilon \ t_{exp} \ 10^{-0.4 \ m_{tot}}$$

 \rightarrow drives large diameter telescopes and large focal distances

Surface brightness received by a resolved source:

$$SB_{
m extended} \propto \left(rac{D}{f}
ight)^2 \ \epsilon \ t_{exp} \ s_{pix}^2 \ N_{pix} \ 10^{-0.4\,\mu}$$

 \rightarrow requires fast optics with minimal (f/D) ratio

The unprobed realm of the low surface brightness universe

mu(V) < 21.5

Mihos et al. (2005)

M49 massive elliptical in Virgo

Blue outskirts \rightarrow blue filters (old) stellar streams \rightarrow red filters

SDSS vs Strömgren/Washington?

UV channels

Outer, low density star formation activity UV is a better tracer of low-level SF XUV discs: galaxies are still growing today Science case #2

The Cosmic Web

Strongest in Lyman α by 1000 x

Bertone + Schaye (2012)

Low surface brightness Lyman- α emitters

VLT 92 hours exposure

Rauch et al. (2010)

Extended Lyman- α emission from $z \sim 2.65$ galaxies

Lyman-α

92 UV-selected galaxies with $\langle z \rangle = 2.65$

Extended haloes to ~ 80 kpc (when stacked)

SB ~ 10^{-19} erg s⁻¹ cm⁻² arcsec⁻²

900 hours integration at 8-10m class telescopes

Lyman-& cooling? Fluorescence by ionising radiation? Scattering from circumgalactic gas?

Steidel et al. (2011)

The optical/UV cosmological background radiation

The optical/UV cosmological background radiation

Gilmore et al. (2012)

Other science cases

- Fluorescent emission from molecular hydrogen (Lyman-Werner bands)
- SB fluctuations and extragalactic distances
- Intracluster light and the accretion history in galaxy clusters
- Time domain astronomy: multi-wavelength variability
- Zodiacal disc
- Mass loss from stars

Scientific and technical challenges

The MESSIER proposal

First catalogue of diffuse objects

Messier (1771) Mem. Acad. Sci. Paris Messier (1780) Conn. Temps

LSST: Large obstruction MI/M2 yields very extended PSFs

Zero obstruction is required

Stability and wings of the PSF

Extended red haloes ?? Zibetti et al. (2004, 2009)

De Jong (2008)

Design issues

wide-field flat(ish) focal plane no lenses (Cerenkov radiation)

Current solution

TMA unobscured, off-axis flat FP f/2 3° x 2° TRL9 (optics/FP) alignment issues TBD

Mirrors + coatings issues

Stray light contamination

No sky variability but many foregrounds:

- zodiacal light
- stray light contamination
- geocoronal/airglow emission
- optical emission from dust

Filters

Focal plane configuration

8 independent CCD controllers in drift-scan mode

QE of each detector optimised for each filter/band

No moving parts

Simulated MESSIER images of a galaxy at 15 Mpc

10 ksec 5 kpc × 5 kpc |00 ksec | kpc × | kpc (|4" × |4")

33.6

34.4 35.2

Simulated MESSIER images of a galaxy at 15 Mpc

I Msec I kpc × I kpc

I0 Msec I kpc × I kpc

Simulated Lyman- α images in MESSIER

Simulated MESSIER images of the cosmic web at z=0.65

IRAS 100µm emission

Optical

Mihos et al. (2009)

Virgo cluster field

 $100 \mu m$ (IRAS)

Optical (de Vaucouleurs 1955)

Magellanic Clouds

angular distribution

Critical technical issues

Optics

optical design: flat focal plane, FOV ~ 8 square degrees ultra-stable PSF with ultra-low wings no lenses (to avoid Cerenkov radiation) extreme baffling to limit straylight contaminations

Detectors

time delay integration controllers + data flow to ground optimise detector/QE for each UV/optical filter

Orbit

orbit stabilisation: great circle drift scan within pixel orbit design: avoiding Moonshine and Earthshine

Synergies

GAIA

MESSIER provides extension of star counts to fainter levels than G=20 Use GAIA astrometry as prior for MESSIER detections Problem: pixel size to separate dwarf galaxies from stars down to g~25 Solution: use EUCLID astrometry as prior

EUCLID

Requires multi-band follow-up for photometric redshifts Use EUCLID astrometry as prior for MESSIER detections

Time-domain astronomy

Transients, transits, etc Complements UV-based projects (Ultrasat, JUST) on longer timescales

Reference catalogue for space-based photometry

MESSIER

z = 0.47

Proposal for a CNES satellite S/M-class, I50M€, 2020 horizon Phase 0 to start in 2013/4

Uncovering the unobserved low surface brightness universe

The last unexplored niche in observational space

Legacy value: reference catalogue for multi-band optical/UV photometry

International partners welcome