The impact of bars on disk breaks as probed by S⁴G

Juan Carlos Muñoz Mateos (ESO) Kartik Sheth, Armando Gil de Paz, Sharon Meidt + the S⁴G team

Deconstructing galaxies Nov 18-22 2013 Santiago de Chile

Galactic disks are exponential...

... or are they?

Type I (10%)
 Single exponential

Type II (60%)
 Downbending exponential

Type III (30%)
 Upbending exponential

See Pohlen & Trujillo (2006); Erwin et al. (2008)

... or are they?

Type I (10%) Single exponential

Type II (60%)

*

22

24

26

20

10

100

50

-50

-100

-100

-50

O

arcsec

✤ Type III (30%) Upbending exponential

> See Pohlen & Trujillo (2006); Erwin et al. (2008)

Downbending exponential

100

80

r (arcsec)

Explanations for disk breaks come in two flavors

Redistribution of angular momentum by bars and/or spirals.

Debattista et al. (2006)

 Star formation related mechanisms.

Lots of old stars beyond the break!

Roskar et al. (2008) Idealized disk Sánchez-Blázquez et al. (2009) Full cosomological simulation

The S⁴G survey

- Spitzer Survey of Stellar Structure in Galaxies (Sheth et al. 2010).
 - Legacy Science Exploration Program.
 - 637.2 hrs
 - 4 min/pixel
 - $\mu_{3.6\mu m} \sim 27 \text{ ABmags/arcsec}^2 (\sim 1 \text{ M}_{\odot}/\text{pc}^2)$

- Over 2300 nearby galaxies observed at 3.6 and 4.5μm.
 - D < 40 Mpc
 - lbl > 30°
 - m_{Bcorr} < 15.5
 - D₂₅ > 1'

The S⁴G survey

- Spitzer Survey of Stellar Structure in Galaxies (Sheth et al. 2010).
 - Legacy Science Exploration Program
 - 637.2 hrs
 - 4 min/pixel
 - $\mu_{3.6\mu m} \sim 27 \text{ ABmags/arcsec}^2 (\sim 1 \text{ M}_{\odot}/\text{pc}^2)$

- Over 2300 nearby galaxies observed at 3.6 and 4.5μm.
 - D < 40 Mpc
 - lbl > 30°
 - m_{Bcorr} < 15.5
 - D₂₅ > 1'

Our working sample

- Parent sample of +800 disk galaxies.
- Selection criteria:
 - Face-on (i<60°)
 - Disks (S0 to Sd)
 - $M_* > 2 \times 10^9 M_{\odot}$
 - No bright stars nor artifacts
- Final sample of 218 disks.

Measuring breaks and bars

Measuring breaks and bars

The break/bar ratio depends on mass

Many breaks lie at the bar OLR

For a flat rotation curve:

- V = constant
- $\Omega \propto 1/r$
- R_{OLR} ~ 1.7 R_{CR}
- In general:
 - R_{CR} ~ 1.2 R_{bar}
 (e.g. Elmegreen et al. 1996)
- Therefore:
 - $R_{OLR} \sim 2 R_{bar}$

Rotation curves are not always flat

Rising rotation curves push the OLR further out

Rising rotation curves push the OLRfurther out

Breaks at large radii in low-mass disks could still have a dynamical origin!

A second family of breaks at 3-4 R_{bar}

Bars and spiral arms can couple

The bar and spiral pattern speeds can be different.

 If resonances overlap, angular momentum is carried much further out!

Bars and spiral arms can couple

Debattista et al. (2006)

Bar/spiral coupling can yield breaks at large radius

- More efficient than a single pattern.
- Radial mixing in only ~ 3 Gyrs! (Minchev et al. 2010).

Conclusions

Breaks are signposts of disk assembly.

- In-situ star formation?
- Radial stellar migration?

Migration can create breaks at large radii.

- Rising rotation curves (in low mass disks).
- Spiral/bar coupling.
- Molecular profiles are broken too.
 - Sharper break than in the stellar profile.