Color gradients in cluster Elliptical galaxies at z~1.4

P. Saracco, A. Gargiulo, F. Ciocca, I. Lonoce, M. Longhetti, S. Tamburri

INAF – Osservatorio Astronomico di Brera, Milano, Italy

Abstract

We studied the color gradients of cluster elliptical galaxies at $z\sim1.4$. We detected in all of them radial variations of the $\sim(UV-U)_{rest}$ and $\sim(U-R)_{rest}$ color showing evidence of multiple stellar components. While we found **negative U-R color gradients**, **UV-U color gradients are always positive** with the few exceptions compatible with null gradients. We show that the observed color gradients cannot be

accounted for by the radial variation of a single parameter (age or metallicity). On the contrary, the analysis shows the presence of two main stellar components: a younger (age<1 Gyr) component with higher metallicity dominating the center (contributing less than 10% to the total stellar mass) and an older component with lower metallicity dominating the outskirts.

1. Sample selection

The sample of cluster ellipticals (Es) has been selected in the cluster XMM 2235-2557 at z=1.39. according to the following criteria:

z₈₅₀<24 (Vega) - magnitudes brighter than 24 in the F850LP band. Flux limited sample 100% complete.

- 2. D<1Mpc Galaxies (352) within one Mpc from the cluster center;
- 0.9<i₇₇₅-z₈₅₀<1.3 Galaxies (50) within this color range defining the second peak of the color distribution (Fig. 1). This sample includes the 5 cluster member ellipticals spectroscopically identified (Rosati et al. 2009);
- 4. Elliptical morphology (see Fig. 2 for examples).

Fig. 2 - Ellipticals are classified those galaxies with regular shape, no signs

Fig. 1 – **Left**: (F775W-F850LP) color distribution of the 352 galaxies with z_{850} <24. The red solid line marks the mean color of the 5 elliptical cluster members with spectroscopic confirmation. **Right**: expected apparent (F775W-F850LP) color as a function of redshift for four different ages (BC03 models and Maraston et al. (2005) models, MAR). The color is always <0.9 mag for z<0.8-0.9 and larger than 1.3 mag for z>1.7 independently of the age.

4. Color gradients: definition The gradient of the color X-Y is defined as the logarithmic slope of the color profile $\nabla_{X-Y} = \frac{\delta(\mu_X(R) - \mu_Y(R))}{\delta \log(R)}$

where $\mu_X(R)$, $\mu_Y(R)$ are the *surface* brightness profiles in X and Y band, respectively.

• negative gradient: redder toward the center

Fig. 3 UV-U (F775W-F850LP, upper panels) and **U-R** (F850LP-F160W, lower panels) color gradients for two out of the 17 ellipticals of the sample. All the galaxies show positive UV-U gradients and negative U-R gradients.

F850LP-F160W ~(U-R)_{rest}: sensitive to both age and metallicity variations.

Since younger age must dominate the center, negative U-R color gradients imply metallicity gradients: metallicity higher toward the center.

Discussion and conclusions

- We find evidence of two stellar components in elliptical galaxies at z~1.4: a younger (age<<1Gyr) component with higher metallicity in the center and an older component with lower metallicity in the outskirts.
- The young age (~0.5 Gyr) of the central component rules out the possibility that it is the result of a dissipative Major merging (Mm): Mm timescale is >3 Gyr (e.g. Khockfar and Silk 2006), hence the resulting stellar population should have a comparable age. Moreover, if it was the case all the 17 ellipticals should have

experienced a Mm at the same epoch, a fine tuning difficult to justify.

- Minor dry merging (mm) is ruled out as well since it cannot produce a segregation of stars based on their age and/or on their metallicity.
- The most reasonable mechanism is a very low star formation activity in the center of the galaxies acting over a long time and supplied by the inflow of interstellar and intergalactic medium.