disks by METIS / IFU

Miwa Goto (University Observatory Munich)

Message

(1) IFU is no extravagance for spoiled astronomers

- not only for spatially resolved spectroscopy
- but also for spatially unresolved spectroscopy

(2) spectro-astrometry

- wavelength calibration key for high precision astrometry

(3) METIS cross dispersing mode?- why high resolution long slit is not a good idea

Disk

Gravitational radius

$$r_g = \frac{GM*}{c_s^2}$$

sound speed of ionized gas = escape velocity photoevaporation / disk dissipation in scope

Herbig Ae/Be 18 AU 100 pc 0".2

is not it possible to resolve it by CRIRES

Can CRIRE do that?

yes

Can CRIRE do that?

The problem: This is almost exhaustive list

 $r_g = \frac{GM*}{c_s^2}$

 Herbig Ae/Be
 18 AU
 100 pc
 0".2

 T Tauri
 9 AU
 140 pc
 0".06

Target of METIS

disk? no, <u>anomaly</u> of disk

Slit vignetting

CRIRES r_g < slit

0

GM*

 c_s^2

r_g =

METIS r_g ~ slit

Slit vignetting

full disk

truncated disk

flared disk

CRIRES observation

Orbital time scale

ELT/METIS VLT/CRIRES

Monitoring

Ring-gapped disk

Monitoring

Bridged disk

this only makes sense when we can guarantee slit vignetting is not an issue IFU is a must

unless slit repeatability accurate << 1 mas

otherwise hundreds of fake planets to be discovered

Spectroastrometry

Lesson learned from SINFONI

2D astrometry

2D Spectro-astrometry

advantage

- signal high
- ~100% slit through put
- precision high ~ \sqrt{N}
- less influence of slit defect
- less influence of PSF variation

Precision achieved

< 0.01 pix precision routine (100 uas)

= 12.5 mas x 0.01 x 150 pc = 0.02 AU = 4 Ro

Astrometric precision

is wavelength calibration precision

Astrometric precision

is wavelength calibration precision

Astrometric precision

is wavelength calibration precision

$\Delta\lambda$ =0.00 pix $\Delta\lambda$

$\Delta\lambda$ =0.01 pix

 $\Delta\lambda$ =0.05 pix

astrometric precision ~ $0.12 \times \Delta\lambda$

0.01 pix precision astrometry

0.1 pix precision wavelength calibration

METIS pre-disperser

parallel dispersion

cross-dispersion

λ coverage: small x coverage: large

λ coverage: large x coverage: small

METIS cross-dispersing mode

spatial coverage >> wavelength coverage
really?

- & extended object
 - photon bucket ~D²
 - $B_{\lambda}/pix \sim D^{-2}$

no good target for large telescope in terms of sensitivity

- a multiple objects
 - high precision PA in advance
 - high precision proper motion
 - adjusting PA = re-acquisition = 10 min
 - 1/4 (personal success rate)

Wavelength coverage

R=100,000

- we are dealing with gas
- molecules. (
 +> hydrogen and other atoms)
- vibrational **band**
 - C-H (CH₄, C₂H₂, etc)
 - O-H (OH, H₂O, etc)
 - C=O (CO, CH₃OH, etc)

Every inch of wavelength coverage counts

10 years ago

2003 Nov, High resolution spectroscopy meeting at ESO

"Why CRIRES not cross-dispersing spectrograph?"

Alan Moorwood replied:

"CRIRES design took time with a long break in between. If we designed it now, we would do it differently."

now CRIRES being upgraded for cross-dispersing mode did we learn anything?

Message again

- IFU is no extravagance
 - a must
 - because of vignetting by slit
 - slit ~ rg (gravitational radius)

Spectro-astrometry

- tricky systematics from wavelength calibration error

cross dispersing mode

- not immediate implimentation
- just make pre-disperser cross disperser for future