Archaeology of Extrasolar Terrestríal Planetary Systems

J. Farihi Ernest Rutherford Fellow Institute of Astronomy University of Cambridge

Exoplanetary Archaeology

- Frequency of terrestrial planet building
- Bulk chemistry of solid planetary bodies
- Mass constraints for exoplanetary building blocks
- Frequency of water-rich exo-asteroids
- Constraints on habitable environments

Solid Exoplanets on the Rise

Venus transit 2012

Kepler Zoo 2012.2

Planet R-Mis Degenerate

Predicted sizes of different kinds of planets

Some Possible Compositions

Iron-poor (Moon)

Earth-like

Asteroíds are Terrestríal

• Primordial building blocks of the terrestrial planets

• Meteorítes are fragments

• Possibly delivered Earth's water & volatiles

Síríus B: Future Sun

Planetary Archaeology

- White dwarfs are evolved but not necessarily old
 - Síríus B
 - Pleíades, Hyades
- Populous in Solar neighborhood

• Earth-sized for excellent contrast

van Maanen's Star

(van Maanen 1917; SPY project: R. Napiwotzki)

Metal-Contaminated Stars

- Gravity strong and radiation weak as they cool
 pure H or He atmospheres
- Externally polluted
 - phenomenon is not ISM or companions
- Excellent astrophysical detectors

 the photospheric abundances of polluted white dwarfs measure the composition of the accreted matter

Asteroid Destruction

(Jura 2003; Debes & Sigurdsson 2002)

White dwarfs are compact
 Asteroids tidally shredded

White dwarfs are pristine
 Star is polluted by debris

- How do we know this?
 - Disk mass, location, composition; heavy elements in star

Typical Dust Disks (Farihi, Jura, Zuckerman 2009)

Metal Emission (Gänsicke et al. 2006)

15

Silicate Emission (Jura, Farihi, Zuckerman 2009)

Olivine is Terrestrial

IR/Sub~mm wavelengths: dust spatial distribution, debris mineralogy, system architecture

UV/Optical wavelengths: elemental composition & minimum mass of asteroid

Brightness

, Wavelength (microns)

10

Rocky Debris in GD 362 (Zuckerman et al. 2007)

Rocky Debrís Confirmed by HST (Gänsicke, Koester, Farihi, et al. 2012)

Debris Properties

- Stellar pollution is refractory-rich, volatile-poor
 dominated by Mg and Fe silicates
- Overall abundances broadly mímíc the bulk Earth
 more carbon-depleted than chondrites
- Some evidence for differentiated bodies
 stripping, melting, collisions (e.g. Moon)
- $M_{accreted} > 10^{22} g$; up to $10^{25} g$ (Pluto)

Sizable to Large Asteroids (Farihi, Barstow, Redfield, Dufour, Hambly 2010)

Water-Rich Asteroids

Asteroíds strong candidates for Earth's water
 e.g. Ceres

• Search for water-rich analogs

• Rocks composed of metal oxídes: MgO, SíO₂, etc. - Excess O in debris can indicate H_2O

Initial Results on Water

- Water likely identified in the debris at GD 61
 Farihi et al. 2011, ApJL, 728, 8
- 17% H_2O by mass

• Asteroid the size of Vesta

• Superior data with Keck & Hubble confirm result

The Need for E-ELT HIRES

- Few stars can be done with Keck + VLT
- SDSS + GAIA will produce hundreds of targets
- E-ELT for detailed chemistry, exo-asteroid families
- Rock chemistry as a function of Galactic Age
- Synergy with ALMA

The Need for E-ELT HIRES

- UV needed for transitional, refractory elements
 Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni
- Red needed for volatile metals, disk emission
 O, Na, Ca triplet, possibly C
- Multiple transitions, multiple lines for accuracy
- High resolution, high UV throughput

End