E-ELT & Galaxies in the first billion years

James Dunlop Institute for Astronomy, University of Edinburgh

PLAN

1. Motivation

2. Current studies of extreme-redshift galaxies

3. E-ELT – what will we want at z > 7 ?

E-ELT issue 1: Surface densities at z > 7
E-ELT issue 2: Emission lines at z > 7
E-ELT issue 3: Galaxy structures at z > 7 – IFUs ?

4. Conclusions

1. Motivation

First billion years = redshifts z > 6

Why is this era of interest?

- When/how did the first galaxies form and grow
- Testing models of galaxy formation
- Establishing whether / when galaxies reionized the Universe

Cosmic Reionization

Recombination

Finished by z ~ 6 (Fan et al. 2006)

J1148+5251 z=6.42	
J1030+0524'z=6.2B	Muniter and the second
J1623+3112 z=8.22	Am
J1048+4637 z=6.20	
J1250+3130 z=6.13	Ann
J1802+4228 z=8.07	
J1630+4012'z=6.05	and the second s
J1137+3549 z=8.01	white
J0818+1722 z=6.00	warman and a second
J1306+0356 z=5.99	and the second s
J1335+3533 z=5.95	man and a second and
J1411+1217'z=5.93	- m - m
JD840+5624 z=5.85	the properties and a second and a second and
J0005-0006 z=5.85	him have been and have been an
J1436+5007 z=5.83	Mundal and and a second and a
JDB36+0054 z=5.82	
J0002+2550 Z=5.80	L'internet and the second seco
JD927+2001 z=5.78	Man and a stranger and a stranger and a stranger for the stranger and the
J1044-0125 z=5.74	MM Marine Marine Marine
WEW 10W 7297 7499 1990 1400 6000	10/0 +10/ 10/0 4/00 4/00 4/00 4/00 10/0 1

But started at much higher redshift: WMAP-9 polarization results suggest reionization at $z \sim 10$ if instantaneous (Hinshaw et al. 2013)

Did the first galaxies reionize the Universe?

Want to establish 3 things:

- 1. Number density of galaxies
 - = Luminosity function
- 2. Number of ionizing photons produced per galaxy= stellar populations
- 3. How many of these photons get out of galaxy to ionize the IGM
 = escape fraction

2. Current studies of extreme redshift galaxies

Observing a quasar at z = 7 is easy! (Mortlock et al. 2011)

Raises issue of why not use Lyman-alpha emission to find galaxies ?

Selecting high redshift galaxies

Broad-band

J H K 3.6µm 4.5µm McLure et al. (2009)

Strengths:

1.More complete2.Larger sample volumes

Problems:

1.Less precise redshift information 2.Potential for low-z contamination

Narrow-band

Strengths:

- 1. Precise redshift information
- 2."Clean" selection method

Problems:

- 1.Sample very limited volume
- 2.Only select line emitters (<25%)

Lyman-break selection

z > 7 - HST Wide Field Camera 3 (WFC3)

Two channel, UVIS and NIR (YJH) NIR channel has 4.5 square arcmin FOV Image quality of ~0.15" FWHM Order of magnitude better that NICMOS

Y J H =29(AB) imaging allows LBG selection out to 7 < z < 10

McLure, Dunlop et al (2010)

WFC3 Imaging of the HUDF: Example SED fits

McLure, Dunlop et al. 2010

ID No. 835 $z_{phot} = 7.20$

Improving the LF at z = 7, 8 : building the wedding-cake.....

Debate over faint-end slope

Important for reionization

Lack of constraint on exponential cut-off

Galaxy formation - onset of feedback?

The Hubble Ultra Deep Field 2012 The deepest near-infrared image

UDF12: Observational details

Ellis, McLure, Dunlop et al., 2013, ApJ, 763, L7

Final depths (AB):

Y ₁₀₅	= 30.0
J ₁₂₅	= 29.5
J ₁₄₀	= 29.5
H ₁₆₀	= 29.5

First meaningful sample of galaxies at z > 8.5Ellis, McLure, Dunlop et al. (2013)

Now clear that galaxies exist and can be studied at $z \sim 10$ and beyond

Hubble Ultra Deep Field 2012 Hubble Space Telescope WFC3/IR

STScI-PRC12-48a

McLure, Dunlop et al. (2013), arXiv:1212:5222

- Photometric redshift selection of z > 6.5 galaxies (10-band SED fits)
- Nested structure of deep/shallow WFC3/IR imaging fields
- Incorporate p(z) into maximum likelihood LF fitting

Example SED fits in UDF12 at z = 7 and z = 8

Redshift z=12 candidate?

- 0.75 1.0 magnitudes fainter at z = 7 and z = 8 than previously possible
- first, self-contained LF determination over large area
- both Schechter function fits suggest very steep faint-end slope (α = 2)

First look at the z = 9 luminosity function

Does at least allow an estimate of the star-formation rate density

Evolution of the star-formation rate density

- Linear fall-off in star-formation density in redshift interval 6 < z < 8
- Evidence for steeper fall-off at z > 8
- Important implications for reionization calculations

Physical properties of faint z = 7 - 8 galaxies

Dunlop et al. (2013) astro-ph 1212.0860

Can't measure much, but can make new unbiased measurement of UV continuum slope

 β , where $F_{\lambda} = \text{const } x \ \lambda^{\beta}$

Aided by selection in new J140W filter

HUDF12 has enabled new, unbiased measure of average UV slope at z = 7 - 8

But what can this tell us?

Bonstandetas-forgadaiøies solar, 0.2 solar, 0.22 solar ohetallicity

cf predictions from galaxy formation simulation (Dayal et al. 2013)

Rare bright z > 7 galaxies: New ground-based near-IR surveys

VISTA telescope: Paranal, Chile 67 mega-pixel camera (1.5 sq. deg) Survey operations commenced in 2010

UltraVISTA – deepest public survey with Vista telescope

- Pls Dunlop, Franx, Le Fevre, Fynbo
- DEEP 0.73 sq. deg., Y=26.7, J=26.6, H=26.1, K=25.6 (1408 hr)
- WIDE 1.50 sq. deg., Y=25.3, J=25.2, H=24.7, K=24.2 (212 hr)
- Narrow-band survey, at 1.185 microns (z = 8.8 for Lyman-alpha) (180 hr)
- 1800 hours over 5 years commenced Jan 2010

UltraVISTA

UltraVISTA + CANDELS

UltraVISTA robust z ~ 7 galaxies

Bowler, Dunlop et al. (2012)

Spectroscopic Follow-up: Ly- α

- Feasible for brighter LBGs
- Gives precise redshifts
- Potential probe of dust content and reionization
- Becomes technically difficult at z > 6.5

VLT spectroscopy – zUDS Curtis-Lake et al. (2012)

~50-70% of luminous (M_{UV} < -21) LBGs at z = 6–6.5 are strong LAEs (E W_0 > 25) ~ 2 x Stark et al. (2011) result - see also Dayal & Ferrara (2011)

Ly α line fluxes are typically $3x10^{-17}$ cgs (EW₀~35 Angstroms), i.e. SFR~10 M_{\odot} yr⁻¹

Spectroscopic confirmation at z>7

Lyman- α line fluxes:

Vanzella et al. (2011): ~1.5x10⁻¹⁷ erg s⁻¹ cm⁻² (16 hours on VLT) Schenker et al. (2012): ~2.8x10⁻¹⁷ erg s⁻¹ cm⁻² (5 hours on KECK) Ono et al. (2012): ~2.5x10⁻¹⁷ erg s⁻¹ cm⁻² (10 hours on KECK)

Only ~20% of targeted objects show strong $Ly\alpha$

3. E-ELT – what will we want at z > 7?

- Redshift census, mapping out the reionization era
- High-resolution imaging spectroscopy testing galaxy formation models
- Dynamics and metallicities

E-ELT issue 1: Surface densities

E-ELT issue 1: Surface densities

Mag limit (AB) z > 7 z > 8 z > 9

H < 25	5	1	0	/degree ² (UltraVISTA)
H < 27	1	0.3	0.05	/arcmin ² (HST CANDELS)
H < 29	10	3	1	/arcmin ² (HST HUDF12)

MOSAIC: Deployable IFUs ~ 20 per field MOSAIC: Fibres with GLAO ~ 200 per field

Argues for mixed architecture MOSAIC concept

E-ELT issue 2: Emission-lines at z > 7

Lyman alpha?

Can be nice and bright $- e.g. EW_0 \sim 200$ Angstrom from "normal" star-forming galaxy

Seen in practice up to $EW_0 \sim 50 - 100$ Angstrom at $z \sim 6$

Recent claims of $EW_0 \sim 400 - 800$ Angstrom at $z \sim 6.5$ Kashikawa et al. (2012), arXiv:1210.4933

Issue 2: Emission-lines at z > 7

E-ELT issue 2: Emission-lines at z > 7

But evidence Lyman alpha rapidly killed at z > 7

Other options in rest-frame UV?

He II 1640: long sought signature of Pop III - but never yet detected in a very high-redshift galaxy

New evidence of strong high-ionization nebular lines [OIII] 5007 CIII] 1909

van der Wel et al. 2011: $z \sim 2$, [OIII] EW₀ up to 1000 Angstrom Stark et al. 2013: $z \sim 6-7$, [OIII] EW₀ ~ 500 Angstrom Labbe et al. 2013

E-ELT issue 2: Emission-lines at z > 7

Suggestion is that with low, but not zero metallicity a star-forming galaxy looks not unlike narrow-line AGN

Direct observation of low-mass star-forming galaxies at $z \sim 2$ support this

CIII] ~ 15% Lyman alpha – so CIII] EW_0 ~ 30 Angstrom

So..... For z = 7.5 galaxy with H = 27.5: CIII] ~ $3 \times 10^{-18} \text{ erg s}^{-1} \text{ cm}^{-2}$ For z = 7.5 galaxy with H = 30.0: CIII] ~ $3 \times 10^{-19} \text{ erg s}^{-1} \text{ cm}^{-2}$

Observable to z ~ 10 if we have K-band

Simulations

10 Mpc comoving, Gadget simulation

Dayal, Dunlop et al. 2013 Campisi et al. 2011; Maio et al. 2010

Brightest galaxy at $z \sim 7 M_{UV} \sim -19.5$ = H ~ 27 AB mag

Good agreement with Hubble Ultra Deep Field and LF McLure, Dunlop et al. (2010; 2013) Dunlop (2012)

Simulations -z = 6.5, H=27 AB mag

12 arcsec

E-ELT diff limit 0.005 arcsec pix

EAGLE-ELT 0.037 arcsec pix

Simulations -z = 6.5, H=27 AB mag

Simulations -z = 7.5, H=27.5 AB mag

Simulations -z = 7.5, H=27.5 AB mag

Conclusions

Many exciting possibilities for E-ELT studies of the reionization epoch

Need to carefully evaluate possible spectroscopic and imaging depths after, e.g., removing the OH sky lines

Galaxy target surface density is a strong function of depth:

1 z > 7 object arcmin⁻² at H < 27 AB mag

10 z > 7 objects arcmin⁻² at H < 29 AB mag

Argues for mixed-architecture MOSAIC concept ~20 IFUs + ~200 fibres

Emission lines other than Lyman alpha may permit

- good redshift census argues for K-band to see CIII] at z ~ 10
- evolution of Ly- $\!\alpha$ alpha optical depth
- metallicity estimates and search for Pop III

Every reason to believe that z > 7 galaxies have much richer structures than implied by HST imaging

– good case for multi-object IFUs, with pixel scale ~ 0.05 arcsec