

Galaxies Étoiles Physique et Instrumentation

The extremely metal-poor stars in external galaxies

Piercarlo Bonifacio & Elisabetta Caffau

Big Bang Afterglow light pattern

Recombination

Dark ages

First stars

First galaxies

Galaxy development

- What were the properties of the first stars ?
- Did they have a role on re-ionization ?
- What was their mechanism of formation ?
- What was their role in shaping the galaxy ?

In order to form a star you need to cool the gas during the collapse, to avoid the pressure to halt the collapse. This becomes critical for low-mass star formation

Collisional excitation and radiative recombination is a very effective mechanism to cool, but you need metals !

- The first generation of stars could have been formed exclusively by massive stars that quickly exploded as SNe
- However:
 - I. low mass stars could have been formed by fragmentation [with (Schneider et al. 2012) or without (Clark et al. 2011) dust]
 - 2. What is the metallicity above which star formation proceeds normally (critical metallicity) ?

What do we know about other galaxies ?

A NEW VIEW OF THE DWARF SPHEROIDAL SATELLITES OF THE MILKY WAY FROM VLT FLAMES: I WHERE ARE THE VERY METAL-POOR STARS? Helmi et al. 2006

Starkenburg et al. 2010 re-calibration of Ca II triplet metallicities, NLTE effects etc...

Still it is obvious that the lowmetallicity populations cannot be properly sampled by these -2.5giant-only samples

If you want large samples go to the TO !

Name	Alias	то	α	(J2000)	δ	DDO Type	$M_{\rm V}$	V_r	D(Mpc)
WLM	DDO 221	29.8	00 ^h 01 ^m	57.8 -1:	5 27 51	Ir IV-V	-14.4	-120	0.93
IC 10	UGC 192	20.0	00 20	24.5 59	0 17 30	Ir IV:	-16.3	-344	0.66
NGC 147	UGC 326		00 33	11.6 48	3 30 28	Sph	-15.1	-193	0.66
And III	A0032+36.		00 35	17.0 36	5 30 30	dSph	-10.2		0.76
NGC 185	UGC 396		00 38	58.0 48	3 20 18	Sph	-15.6	-202	0.66
NGC 205			00 40	22.5 41	41 11	Sph	-16.4	-244	0.76
M 32	NGC 221		00 42	41.9 40) 51 55	E2	-16.5	-205	0.76
M 31	NGC 224		00 42	44.2 41	16 09	Sb I-II	-21.2 [†]	-301	0.76
And I	A0043+37		00 45	43 38	3 00 24	dSph	-11.8		0.81
SMC		23.9	00 52	36 -72	2 48 00	Ir IV/IV-V	-17.1	148	0.06
Sculptor		24.8	01 00	04.3 -33	3 42 51	dSph	- 9.8	110	0.09
Pisces	LGS 3		01 03	56.5 2	1 53 41	dIr/dSph	-10.4	-286	0.81
IC 1613			01 04	47.3 0	2 08 14	Ir V	-15.3	-232	0.72
And V			01 10 1	17.1 4	7 37 41	dSph	-10.2		0.81
And II			01 16 2	27 3	3 25 42	dSph	-11.8		0.70
M 33	NGC 598		01 33 5	50.9 3	0 29 37	Sc II-III	-18.9	-181	0.79
Phoenix			01 51 0)3.3 -44	4 27 11	dIr/dSph	- 9.8		0.40
Fomax		25.7	02 39 5	53.1 -34	4 30 16	dSph	-13.1	53	0.14
LMC		23.5	05 19 3	-69	9 27 06	Ir III-IV	-18.5	275	0.05
Carina		25.0	06 41 3	36.7 -50	57 58	dSph	- 9.4	223	0.10
Leo A	DDO 69		09 59 2	23.0 30) 44 44	Ir V	-11.5	24	0.69
Leo I	Regulus		10 08 2	26.7 12	2 18 29	dSph	-11.9	287	0.25
Sextans		24.8	10 13 0	2.9 -01	1 36 52	dSph	- 9.5	226	0.09
Leo II	DDO 93		11 13 2	7.4 22	2 09 40	dSph	-10.1	76	0.21
Ursa Min.	DDO 199	23.9	15 08 4	9.2 67	06 38	dSph	- 8.9	-247	0.06
Draco	DDO 208	24.5	17 20 1	18.6 57	7 55 06	dSph	- 8.6	-293	0.08
Milky Way	Galaxy		17 45 3	39.9 -29	9 00 28	S(B)bc I-II	-20.9	16	0.01
Sagittarius		22.4	18 55 ()4.3 -30	0 28 42	dSph(t)	-13.8::	142	0.03
SagDIG *			19 29 5	58.9 -17	7 40 41	Ir V	-10.7:	- 79	1.40:
NGC 6822			19 44 5	56.0 -14	4 48 06	Ir IV-V	-16.0	- 56	0.50
Aquarius*	DDO 210		20 46 5	53 -12	2 50 58	v	-11.3	-131	1.02
Tucana*			22 41	48.9 -64	4 25 21	dSph	- 9.6		0.87
Cassiopeia	And VII		23 26	31 50	0 41 31	dSph	- 9.5		0.69
Pegasus	DDO 216		23 28 3	34 14	44 48	Ir V	-12.3	-182	0.76
Pegasus II	And VI		23 51 3	39.0 24	4 35 42	dSph	-10.6		0.83

Instrument Requirements Wavelength range

- blue: [380-520] nm
- red: [640-672] nm for EMP
- red (goal) [640-676] S I Mult. 8

- Hα, Li I 670.7 nm
- Ca II K, G-band 430nm
- CN band 388nm
- Ba II 4554 nm
- Eu II 644 nm and 664 nm
- enough Ca, Mg, Fe II lines

G-Band

Lithium

X-Shooter spectrum R= 12400

Instrument Requirements Resolution

- R = 10 000 (X-Shooter-like)
- R = 20 000 (Giraffe-like)
- R = 40 000 (UVES-like)

R > 10 000
(baseline)

• R > 12 000 (goal)

Fibre Only Option: High Multiplex Mode

HMM focal plate

Assumptions

120 science channels Buttons with fibre retraction scheme Stepped focal plate In-plane rotation >180deg

Known issues

Change in field curvature causes difficulty in fibre alignment and focus. Synchronisation of plate rotation with LGS system.

SEE POSTER Jagourel et al.