

Adaptive Optics
There's an app for
that now, right ?

The prototype
ESO/ELT WFRTC

and

What COTS really
means these days

Poul-Henning Kamp
&

Force Technology

Poul-Henning Kamp
30 years hacking Unix
20 years FreeBSD
NTP/nanokernel
Varnish HTTP cache
Lots of other stuff

Force Technology
~1k Engineers

Optimisation and automation of
production and processes. Material
use, protection and analyses.
Inspection, testing, calibration,
verification and certification.
Maritime technology. Integrity
Management. Utilization and
development of sensor technologies.
Optimisation and development of
management systems. Energy, climate
and environment.

ESO/ELT WFRTC in numbers

5004 (X,Y) pairs from WF-sensors
n*12 Sparse registration matrix
6350 Actuators
 n*m Fully populated actuator matrix

 500 Hz operation rate
 1 ms latency
 20 µs jitter

 64 Mflop/cycle
 ~64 Gflops

1G ether switch

10G Arista switch

2 * Dell 4-core PC

5 * Dell 48-core PC

~= € 50K

FreeBSD (UNIX)

15 lines assembler

10k lines C source

Actual performance

Using only 4 * 48 core servers
(last one became WF-simulator)

 Rate 500 … 800 Hz
Limiting factor: 1500 bytes/packet
Rate > 1kHz possible with 9k packets
Latency < 800µs //– –

Jitter < 15µs
(Requirement driver is unclear)

How ?!

WFRTC is not a real-time job

WFRTC is a batch-job

We know when data arrives

We know our deadline

We have nothing else to do

HowTo

Stock FreeBSD kernel
Linux can probably also do it

Disable interrupt-hogs
USB, cron, power-mgt, etc.

Steer OS-timer interrupt to work-cycle

Enable HW-NUMA (= disable interleave)

Lock proc/threads to CPU-cores

Big picture

WF W3W2W1W0

Reg-mtx ¼ Act-mtx

Reg-mtx

Reg-mtx

Reg-mtx

¼ Act-mtx

¼ Act-mtx

¼ Act-mtx

time

Big picture, more details

WF W3W2W1W0

Reg-mtx ¼ Act-mtx

Reg-mtx

Reg-mtx

Reg-mtx

¼ Act-mtx

¼ Act-mtx

¼ Act-mtx

time

PLL

reg-mtx

MGT

OaM

Hkeep

Hkeep

Hkeep

Hkeep

PLL:
Adaptation to WF rate/phase

Reg-mtx:
Sort+partition reg-matrix (1Hz)

OaM:
Operation & Maintenance
Incl: update act-matrix, params

Work distribution

Socket #0
Core #0: Kernel
Core #1: Main-loop, RX, TX
Core #2-5: Reg-mtx

Socket #1-3
Core #6-47: Act-mtx (+ filter)

Reflect HW hierarchy:

Really not a 4*12
But a 8*6 topology

L2 L2
L3

L2 L2
L3

Performance: (1 server ~ €6k)

Conclusion:

Easy bit:
Math

Straight forward matrix-operations

Hard bit:
Timing

Merging async events into sync work-flow

Take-home message:

Adaptive optics runs on COTS hardware now

2kHz & 500µs within reach

Why it works

1. Stock-trading needs fast networks

2. Climate models need massive clusters

3. Gamers wants fast graphics/SIMD/MMX (Trick#1)

4. Modern UNIX kernels

5. Trick#2: Timer-steering

Why it works: 10G Ethernet

Driven by:
Algorithmic stock-trading paid for this
Low and predictable latency

Arista switch: < 500ns cut-through delay

BUT:

- Packet loss
- Packet reordering
- No end-to-end connectivity
- No end-to-end packet timing

Why it works: MPP COTS machines

Driven by:
Moores law running out
Scientific computing (climate, oil, biology)

BUT:

- Speed at the cost of:
Parallelism
Latency
Multiplexing

Why it works: Faster graphics/SIMD/MMX

Driven by:
First Person Shooter games
Fast (and loose) physical modelling

BUT:
- Moving towards GPU/Co-processor model

Why it works: Trick #1 MMX instructions
 __asm__ __volatile__(
 "\n"
 " xorps %%xmm0, %%xmm0\n"
 " .align 16, 0x90\n"
 "1:\n"
 " movups (%1), %%xmm1\n"
 " movups 16(%1), %%xmm2\n"
 " movups (%2), %%xmm3\n"
 " movups 16(%2), %%xmm4\n"
 " add $32,%1\n"
 " add $32,%2\n"
 " mulps %%xmm3, %%xmm1\n"
 " addps %%xmm1, %%xmm0\n"
 " mulps %%xmm4, %%xmm2\n"
 " addps %%xmm2, %%xmm0\n"
 " decl %3\n"
 " jne 1b\n"
 " movaps %%xmm0, %0\n"
 : /* outputs */
 "=m" (ans)
 : /* inputs */
 "r" (regsens),
 "r" (lhsrow),
 "b" (n)
 : /* clobbered */
 "xmm0",
 "xmm1",
 "xmm2",
 "xmm3",
 "xmm4",
 "memory"
);

Why it works: Modern UNIX kernels

Driven by:
Keeping up with hardware
Massive server-farms (Google, Facebook, etc)
Real-Time like facilities (financial, SCADA etc)

BUT:
”The kernel is obsolete”

 — Rob Pike (2001)

Why it works: Trick #2 Timer steering
void
i8254_trick_now(double period)
{
 unsigned i;

 trick = (uint16_t)((14.318318e6/12.) * period);

 disable_intr();

 /*
 * Switch timer to single-shot, and force an interrupt
 * in a few microseconds
 */
 outb(TIMER_MODE, TIMER_SEL0 | TIMER_INTTC | TIMER_16BIT);
 outb(TIMER_CNTR0, 2);
 outb(TIMER_CNTR0, 0);

 /*
 * Wait for interrupt to happen
 */
 for (i = 0; i < 4U; i++)
 if (inb(TIMER_CNTR0) & 0x80)
 break;

 /*
 * Set timer in rategen mode
 */
 outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
 outb(TIMER_CNTR0, trick & 0xff);
 outb(TIMER_CNTR0, trick >> 8);
 enable_intr();
}

The future ?

How many servers will ESO/ELT need ?
- 2013: 3 or 4
- 2020: 1 maybe 2–

Perspectives:
- More advanced control law possible ?
- Lower barrier for experimental modes
- Hardware redundancy
- Very high rates/low latencies
- No custom hardware
- Cheap

The future ?

Consider a joint FOSS project:
- LGPL source code (ask ESO for copy)
- Already parameterized and adaptable

Force & PHK will be happy to help
- Reasonable rates
- Will visit telescopes

Supporting material:

Packet transmit-time histogram:

Supporting material:

Packet transmit-time histogram:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

