

Focusing light through complex media by wavefront shaping

David Martina Ori Katz Sylvain Gigan

Light perturbation :

two regimes of perturbations :

• turbulence :

continuous (weak) phase aberrations \rightarrow effectively mitigated by adaptive optics

• *turbidity :* strong multiple scattering \rightarrow

Imaging in depth in scattering media

→ Conventionally : information from unscattered (*'ballistic'*) light only

Beer-Lambert Law: Exponential decay of the ballistic light

Imaging in depth in scattering media

→ Conventionally : information from unscattered (*'ballistic'*) light only

Beer-Lambert Law: Exponential decay of the ballistic light

→ No imaging beyond a fews hundreds microns in living tissues

CAN WE GO DEEPER?

Scattering, a coherent process

Young's slit experiment

→ two wave interference

→ Fringes

Multiple scattering

thin layer of white paint (particle size $\leq 1 \ \mu m$)

Scattering, a coherent process

results from multiple interferences between a multiple random paths

Focusing through a complex media

Focusing through a complex media

It is possible to shape these modes in phase to obtain a constructive interference on a single speckle grain (Equivalent to phase-conjugation)

Two ways to achieve focusing : optimization

different algorithms

- Independent action of pixels \rightarrow easy convergence of optimization
- SNR proportional to the number of pixels controlled

Two ways to achieve focusing : transmission matrix

→ Measurement possible, permitting : focusing / image reconstruction

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan, Phys. Rev. Lett. 104, 100601 (2010)

Two ways to achieve focusing : transmission matrix

Focusing in biological tissues

→ biological tissues are multiply scattering media:
→ Is it possible to focus inside ?

- Light delivery :
 - destruction of localized tissues (e.g. cancerous cells)
 - excitation of specialized molecules so that they would be able to deliver drugs *in situ* or be activated at the right place
- Non-invasive imaging inside tissues

Why is it not already done?

Focusing in biological tissues

Problems :

- Not possible to use a camera
 - → Need for a beacon/artificial star that we can optimize on :
 - With sound : *e.g.* photo-acoustic
 - in light : *e.g.* fluorescence

Living tissues, a continuously evolving media

Decoherence time ~ 1-10 ms \rightarrow necessity to optimize within this time

Phase control devices

Spatial light modulator (SLM) (liquid cristals)

>1 million of pixels stroke : 1 microns frame rate : 50Hz **Deformable mirrors** (piezo actuators, magnetic, electric ...)

continuous or **segmented** max ~ thousands actuators stroke : typ tens microns frame rate > kHz

too slow

our solution

Experimental setup

Conclusions and perspectives

- Focusing through a complex medium
- Possibility to overcome beer-Lamber law to achieve focusing and imaging beyond a strongly scattering medium
- Closed-loop control for focusing by optimization : the premises
 - feedback given by a single detector (photomultiplier)
 - currently: acquisition through a PC mezzanine DAQ card
 - \rightarrow acquisition rate too slow for the moment ... latency of 10 ms ...

Limited calculation required but high speed closed-loop necessary Is FPGA a solution ? Can your community help?

The team - acknowledgments

The team

Hugo

Sylvain GIGAN

Daria **ANDREOLI**

Thomas

Dr. David MARTINA

Pierre BONDAREFF

DEFIENNE

Acknowledgments

CHAIGNE

Dr. Giorgio VOLPE

Sébastien POPOFF

Geoffroy LEROSEY

Samuel GRESILLON

BOCCARA

Emmanuel BOSSY

Funding - Collaborations

B. Chatel IRSAMC, Toulouse (France)

I. Walmsley U. Oxford (UK)

R. Sapienza, King's College (UK)

I. Carron Texas A&M U. (USA)

L. Bourdieu, ENS, Paris (France)

