A Catalog of Blue Stragglers in Open Clusters

J. A. Ahumada Observatorio Astronómico Universidad Nacional de Córdoba Argentina

BSs in open clusters since the Fifties

THE COLOR-MAGNITUDE DIAGRAM FOR THE GALACTIC CLUSTER NGC 7789*

E. MARGARET BURBIDGE[†] Kellogg Radiation Laboratory, California Institute of Technology

AND

ALLAN SANDAGE Mount Wilson and Palomar Observatories Carnegie Institution of Washington, California Institute of Technology Received May 5, 1958

age 1957). On the basis of our present results in NGC 7789, we now conclude that this interpretation is probably not correct. M3 also has many blue stars brighter than the main-sequence turnoff point (Sandage 1953; Johnson and Sandage 1956). Additional bright blue "stragglers" are known in the Coma Berenices cluster (17 Comae: Weaver 1952; Johnson and Knuckles 1955), and in Praesepe (Klein Wassink No. 265: Eggen 1951; Johnson 1952) and possibly in h and χ Persei (Masevich 1957, using Johnson and Hiltner's data of 1956). The point is of interest because these bright blue stragglers are not understood on current ideas of stellar evolution.

FIG. 5.-The color-magnitude diagram for NGC 7789 from the data of Tables 3 and 4

Some antecedents (before 1992)

- Partial lists of BSs: Strom & Strom (1970), Hintzen et al. (1974), Hrivnak (1977), Mermilliod (1982), Peterson et al. (1984), Stryker & Hrivnak (1984), Twarog & Tyson (1985), Abt (1985), Eggen & Iben (1988, 1989), Mathys (1991), Pritchet & Glaspey (1991), Milone (1991), etc.
- A few statistical studies: Wheeler (1979), Mermilliod (1982), Morales & Sabau (1987), etc.

Heroic times: the selection

- Clusters from Lyngå's (1987) catalog
- Search through A&A Abstracts
- UBV photometry preferred
- Accuracy and completeness of the photometry
- Quality of the color-magnitude and color-color diagrams

An attempt to classify the BSs into three categories using:

- Membership probabilities: proper motions, radial velocities, photometric criteria, central position in the cluster
- Spectra consistent with those of or slightly-evolved stars
 Mentions by other authors
 Position on certain parts of the area

The first catalog (1995)

King 4

NGC 1039

NGC 1027

IC 1848

NGC

NGC

NGC

King NGC

Melo King

NGC NGC

IC 3

Plei

NGC King

NGC

NGC

Czernik 13

Berkelev 66

Trumpler 2

Berkeley 65

Astron. Astrophys. Suppl. Ser. 109, 375-382 (1995)

Catalogue of blue stragglers in open clusters^{*}

J. Ahumada^{1,2} and E. Lapasset^{1,3}

ULU (etore.		L		AB AULISTAKS AT AU AAAA
303 3	51al 5		03	Harvard 8	= Collinder 268. Star 2 is cited as a blue straggler in (293).
				Harvard 8	Adopted cluster centre: star 12 of (293).
			-	Hogg 10	The apparent cluster diameter was taken from (71).
			nt	Hogg 17	Star 1 appears as a straggler but is a non-member according
			UI	Hogg 17	to (248).
00.05.7	. 50.00	0.00		Hyades	Star 56 is a cluster member acording to the proper motion and
02 35.7	+59 00	0.86	<i>'</i> .	Hyades	radial velocity study (409). Adopted cluster centre: star 57
2 02 37.3	+55 59	0.32	8.	Hyades	of the same reference. References (1) and (281) cite star 56
65 02 39.0	+60 25	1.12	<i>.</i> .	Hyades	as a blue straggler. Star 56=68 Tauri=HD 27962 has a spectrum
02 42.1	+42 46	0.07	8.	Hyades	A3V and an optical companion of magnitude 9 (55). The blue
02 42.7	+61 36	0.33	8.	Hyades	straggler does not show anomalous lithium abundances (50).
13 02 44.7	+62 21	0.76	6.	Hyades	In (1) this star is given a spectrum Am(K/H/M=A2/A3:/A5) and
02 51.2	+60 26	0.60	6.	Hyades	a projected velocity v.sin i=18km/s. It has been suggested
66 03 04.3	+58 46	1.25	9.	Hyades	(303) that the white dwarf component of the binary V471 Tauri
King 5	273	0273	2	Hyades	in this cluster descends from a blue straggler. The selected
King 5	710	0710	2	Hyades	angular diameter in (259) is listed.
King 5	801	0801	2	IC 166	The cluster is given $E(B-V)=0.80$ and an age between those of
King 5	890	0890	2	IC 166	NGC 752 and NGC 7789 in (51). Star 459 could not be identified
NGC 1245	689	0146	2	IC 166	in the chart.
NGC 1245	3005	0007	4	IC 1311	Several possible blue and red stragglers are pointed out in (10).
NGC 1245	3014	0512	2	IC 1369	Adopted cluster centre: star 57 (ref. 160). All the blue
NGC 1245	3021	0011	2	IC 1369	stragglers lie on the periphery of the cluster, but they are
NGC 1245	3027	0507	2	IC 1369	members according to (169). In particular, note the close
NGC 1245 Melette 20	3036	0071	4	IC 1369	group of stars 155-156-157.
Melotte 20	HD 22928		4	IC 1805	The dereddened colour-magnitude diagram of (188) was examined.
King 6	133	0133	2	IC 2488	Diagrams in (311) were also examined. Adopted cluster centre:
NGC 1342	2	0002	2	IC 2488	star 28 in (311). Star 99=HD 302225(B8) is cited as a blue
NGC 1342	4	0004	2	IC 2488	straggler in (311), and is a probable cluster member (85).
NGC 1348	645	0645	2	IC 2581	The dereddened colour-magnitude diagram in (392) was examined.
Pleiades	1432	1432	4	IC 2602	Star 18=Theta Carinae=HD 93030 is a well known blue straggler.
NGC 1444	3	0003	2	IC 2602	In (177) this star is given the following: $v=2.78$, $(b-y)=-0.094$,
NGC 1444	5	0028	2	IC 2602	m1=0.063, c1=-0.078, beta=2.603, spectrum: B0Vp. Reference
King /	40	0040	2	IC 2602	(281) gives it a projected velocity v.sin i=195km/s. Theta Car
King 7	317	0317	2	IC 2602	is a spectroscopic binary of period 1.77 days and eccentricity
King 7	431	0431	2	IC 2602	0.446 (423), thought to be the result of a mass transfer event
King 7	519	0519	2	IC 2602	in a close binary: an account of this interpretation can be
King 7	584	0584	2	IC 2602	found in (117).
King 7	602	0602	2	IC 2714	Star 98, which also appears as a blue straggler, is a non-member
Hyades	56	0056	1	IC 2714	according to (83).
Berkeley 12	121	0727	2	IC 2944	Star 21=HD 101545 has a spectrum BOIII (184).
Berkeley 12	967	0967	2	IC 4651	The colour-magnitude diagrams in (18) and (111) were examined.
Horkolov 12	1020	1069	- 1		

Some results

Fig. 2. Mean number of blue stragglers per open cluster and per logarithm of cluster age interval

Fig. 4. Mean number of blue stragglers per open cluster, relative to the number of main sequence stars on the two magnitudes below the turnoff, vs. logarithm of cluster age interval

Fig. 3. a) Percentage of open clusters with blue stragglers, per logarithm of cluster age interval. Clusters in the whole range of richness are included

On the problem of the limits

Fig. 1. Schematic colour-magnitude diagram for an old open cluster: the isochrone corresponds to log(age) = 9.8. The blue straggler area is shaded.

Fig. 2. Schematic colour-magnitude diagram for a young open cluster: the isochrone corresponds to log(age) = 7.5. The blue straggler area is shaded.

Ten years passed by...

- New clusters ✓
- Better photometry
- More membership studies
- Melotte 66 Spectroscopic information ✓...

Kassis et al. (1997)

Here we go again: the selection

- Search through the WEBDA for cluster and star data
- UBVI photometry preferred

Accuracy and completeness of the photometry

Table 1. Open clusters with entries in AL95 but not included in the present catalogue.

Basel 1	Basel 4	Basel 5	Basel 7
Basel 11a	Basel 11b	Basel 18	Berkeley 94
Bochum 4	Bochum 5	Bochum 11	Bochum 12
Bochum 13	Bochum 15	Collinder 173	Collinder 197
Collinder 240	Collinder 285	Collinder 347	Collinder 469
CV Mon	Czernik 29	Haffner 15	Haffner 20
IC 1442	Lyngå 14	Markarian 6	NGC 189
NGC 1605	NGC 2254	NGC 2286	NGC 2395
NGC 2423	NGC 2579	NGC 2925	NGC 3330
NGC 6208	NGC 6546	NGC 6683	NGC 6802
NGC 7031	NGC 7062	NGC 7226	NGC 7245
NGC 7762	Pismis 17	Ruprecht 18	Ruprecht 92
Ruprecht 93	Ruprecht 97	Ruprecht 108	Sher 1
Trumpler 22	Trumpler 31	Trumpler 33	Trumpler 35
Waterloo 6	-	-	

C-M and color-color diagrams again in all clusters for of procedure

The procedure: now, isochrones

Fig. 3. Colour-magnitude diagram of NGC 2632. The photoelectric data of Johnson (1952) are plotted. The ZAMS from Bertelli et al. (1994) and the isochrone of solar metallicity and log(age) = 8.9 by Girardi et al. (2000) are set at E(B - V) = 0.00 and $(m - M)_0 = 6.25$. The two catalogued blue stragglers (solid circles) and the blue hook are seen clearly.

Fig. 4. Colour-magnitude diagram of NGC 7789. The photographic data of Burbidge & Sandage (1958) are plotted. The solid circles represent the stragglers listed in our catalogue. From left to right, we show the solar-metallicity ZAMS of Bertelli et al. (1994) and the isochrones of Girardi et al. (2000) for log(age) = 8.45 and 9.15; the curves are set at E(B - V) = 0.20 and $(m - M)_0 = 11.42$. The massive stragglers are the two brightest.

More differences

Superior limit of the BS area not fixed:

Stellar mode are involved Classificatio

Fig.4. Colour-magnitude diagram of NGC 7789. The photographic data of Burbidge & Sandage (1958) are plotted. The solid circles repre- sur-magnitude diagram of NGC 2632. The photoelect sent the stragglers listed in our catalogue. From left to right, we show noon (1952) are plotted. The ZAMS from Bertelli et the solar-metallicity ZAMS of Bertelli et al. (1994) and the isochrones the isochrone of solar metallicity and log(age) = 8.9 of Girardi et al. (2000) for log(age) = 8.45 and 9.15; the curves are set 1. (2000) are set at E(B - V) = 0.00 and $(m - M)_0 = 6.2$ at E(B - V) = 0.20 and $(m - M)_0 = 11.42$. The massive stragglers are alogued blue stragglers (solid circles) and the blue hook a the two brightest.

Astronomy & Astrophysics manuscript no. aa4590-05 December 22, 2006

The second catalog (2007)

New catalogue of blue stragglers in open clusters*

J. A. Ahumada and E. Lapasset

1887 stars in 427 open clusters of all ages
 Percentage of clusters with at least 1 BS candidate: 46.6%

- Percentage of BS classified as 1: 10.6% (200)
- Two tables, notes, and references, like the first catalog

Fig. 5. Average number of blue stragglers, per main-sequence star and cluster.

Table 4. Peculiar blue stragglers (for the references, see the notes of the catalogue).

Cluster	Stragglers
Berkeley 39	Four eclipsing binaries and a δ Sct variable.
Collinder 261	Ten eclipsing binaries.
Hyades	An Am star.
IC 2602	The spectroscopic binary θ Car has a period 1.77
	days and a spectrum Bp.
IC 4651	Two probable binaries, one of them is an X-ray
	source.
IC 4725	A Be straggler.
IC 4756	An Ap straggler.
Melotte 111	An α CVn variable, of spectrum Ap.
NGC 188	A W UMa binary.
NGC 752	An X-ray source.
NGC 884	An Op straggler.
NGC 1342	An Ap straggler.
NGC 2251	An Ap straggler.
NGC 2281	An Ap straggler.
NGC 2287	A Bp straggler.
NGC 2354	An Algol, eclipsing binary.
NGC 2422	A Be straggler.
NGC 2516	V374 Car is a binary of spectrum Be.
NGC 2546	An Ap straggler.
NGC 2632	An Ap straggler; another Am and binary.
NGC 2682	Several binaries, X-sources, and δ Sct stars.
NGC 3532	A Bp straggler.
NGC 4755	A β Cep variable.
NGC 6025	A Be straggler.
NGC 6231	An Op straggler.
NGC 6425	A Be straggler.
NGC 6475	A spectroscopic binary.
NGC 6633	A Bp straggler.
NGC 6705	A Bp straggler.
NGC 6791	An EW variable.
NGC 6871	A WR binary.
NGC 7243	An Ap straggler.
NGC 7789	An Ap star, and a δ Sct variable.

Table 7. Clusters with the largest relative populations of blue stragglers ($N_{\rm BS}/N \ge 0.1$).

Cluster	log (age)	$N_{\rm BS}/N$	Cluster	log (age)	$N_{\rm BS}/N$
Ruprecht 46	9.6	0.26	King 11	9.1	0.13
Berkeley 70	9.7	0.22	NGC 188	9.6	0.13
NGC 7142	9.3	0.21	Pismis 3	9.0	0.13
Berkeley 66	9.7	0.19	Berkeley 21	9.3	0.12
Berkeley 14	9.2	0.17	King 2	9.8	0.12
NGC 2682	9.4	0.17	NGC 2112	9.3	0.12
NGC 7789	9.2	0.17	NGC 2627	9.3	0.11
Berkeley 17	10.1	0.16	Pismis 2	9.1	0.10
Berkeley 32	9.5	0.16	Berkeley 81	9.0	0.10
NGC 6005	9.1	0.16	-		

On the problem of membership (1)

Berkeley 66, log(age) ~ 9.7 (Carraro et al. 2008) Table 3. Rich open clusters with many stragglers.

Berkeley 12	Berkeley 14	Berkeley 17	Berkeley 18
Berkeley 21	Berkeley 22	Berkeley 31	Berkeley 39
Berkeley 66	Berkeley 70	Berkeley 99	Collinder 110
Collinder 261	King 2	King 11	NGC 1193
NGC 2141	NGC 2158	NGC 2194	NGC 6253
Pismis 2	Pismis 3	Ruprecht 46	Trumpler 5

On the problem of membership (2)

NGC 4463, log(age) ~ 7.85 (Majaess et al., in preparation)

