

Dimitris Stamatellos School of Physics & Astronomy Cardiff University, Wales, UK

The formation of low-mass stars and brown dwarfs by disc fragmentation

11th October 2011, ESO, Germany

D.Stamatellos@astro.cf.ac.uk http://www.astro.cf.ac.uk/pub/Dimitrios.Stamatellos

The formation of low-mass stars and brown dwarfs

gravo-turbulent fragmentation of molecular clouds

Padoan & Nordland 2002; Bate et al. 2004; Goodwin et al. 2004 Hennebelle & Chabrier 2008, 2010

premature ejection of protostellar embryos

Clarke & Reipurth, Bate et al. 2003, 2004; Goodwin et al. 2004

disc fragmentation

Stamatellos, Hubber & Whitworth 2007, MNRAS Stamatellos & Whitworth 2009, MNRAS, Bate et al. 2003

Brown dwarf and low-mass star formation by disc fragmentation

Stamatellos & Whitworth 2009, MNRAS, 392, 413 "The properties of brown dwarfs and low-mass hydrogen-burning stars formed by disc fragmentation"

✓ The shape the low-mass end of the IMF

✓ The presence of discs around brown dwarfs (BDs don't have to form like solar-mass stars in order to have discs!)

The formation of BD-BD binaries (produce both tight and wide binaries)
The formation of free-floating planetary-mass objects

✓ Specific low-mass binary characteristics: BDs that are companions to Sun-like stars are more likely (25-50%) to be in binaries than brown dwarfs in the field (~10%) (Burgasser et al. 2005; Faherty et al. 2010)

✓ The brown dwarf desert

- There are many planets and low-mass stars close (<5 AU) companions to Sun-like stars, but almost no brown dwarfs (Marcy & Butler 2000).
- The brown dwarf desert may extend out to ~1000 AU (Gizis et al. 2001) but is less "dry" of brown dwarfs outside ~50 AU (Neuhauser et al. 2003).

time ~ 5,000 yr

- There are many planets and low-mass stars close (<5 AU) companions to Sun-like stars, but almost no brown dwarfs (Marcy & Butler 2000).
- The brown dwarf desert may extend out to ~1000 AU (Gizis et al. 2001) but is less "dry" of brown dwarfs outside ~50 AU (Neuhauser et al. 2003).

time ~ 20,000 yr

- There are many planets and low-mass stars close (<5 AU) companions to Sun-like stars, but almost no brown dwarfs (Marcy & Butler 2000).
- The brown dwarf desert may extend out to ~1000 AU (Gizis et al. 2001) but is less "dry" of brown dwarfs outside ~50 AU (Neuhauser et al. 2003).

time ~ 200,000 yr

Radiative feedback suppresses the formation of low-mass stars and brown dwarfs?

Offner et al. 2009; Bate 2009, 2011

■Almost no brown dwarfs form at all → something is missing

The importance of radiative feedback from protostars

Simulation I:

Radia tive feedback is included down to the sink radius (1AU) [similar to Bate's 2009 simulations]

> Initial conditions: turbulent cloud core $M = 5.4M_{\odot}$ $N_{\rm SPH} = 10^6$ particles

$$\rho(r) = \frac{\rho_{\text{kernel}}}{(1 + (r/R_{\text{kernel}})^2)^2} \qquad \begin{array}{l} R_{\text{KERNEL}} = 5000 \text{ AU} \\ \rho_{\text{KERNEL}} = 3 \times 10^{-18} \text{ g cm}^{-3} \\ R_{\text{CORE}} = 50\,000 \text{ AU} \end{array}$$

SPH code SEREN by David Hubber et al. (2011)

Radiative transfer method of Stamatellos et al. (2007)

lag column density

The importance of radiative feedback from protostars

Simulation II:

Radiative feedback from protostars is fully included Continuous radiative feedback [similar to Offner, K<u>rumholz, Klein 2009 simulations]</u>

$$L_{\star} = \left(\frac{M_{\star}}{M_{\odot}}\right)^{3} L_{\odot} + f_{\rm rad} \frac{GM_{\star}\dot{M}_{\star}}{R_{\star}} \left(1 - \frac{R_{\star}}{2R_{\rm sink}}\right)$$

 $f_{\rm rad} = 0.75$

The fraction of the accretion energy that is radiated away

Accretion is episodic: FU Ori's

[see talks by Dunham, Hartmann, Offner]

FU Ori-type stars

Hartmann & Kenyon 1996, ARAA

rise time: 1-10 yr duration: 10s to a few 100s yr Accretion rate: a few $10^{-4} M_{\odot}/yr$ Mass: 0.01-0.1 $M_{\odot}/event$

Accretion is episodic: FU Ori's

FU Ori-type stars

Hartmann & Kenyon 1996, ARAA

rise time: 1-10 yr duration: 10s to a few 100s yr Accretion rate: a few $10^{-4} M_{\odot}/yr$ Mass: 0.01-0.1 $M_{\odot}/event$

Accretion is episodic: Herbig-Haro objects

Episodic accretion onto a protostar results in episodic ejection of material.

Visible • WFPC2

Infrared • NICMOS

HH111 Hubble Space Telescope WFPC2 • NICMOS

Reipurth Nature 340, 42–45(1989)

NASA and B. Reipurth (CASA, University of Colorado) • STScI-PRC00-05

Accretion is episodic: the luminosity problem

 The luminosities of protostars are not high enough (Kenyon et al. 1990; Evans et al. 2009; Dunham et al. 2010)

$$0.5 \mathrm{M}_{\odot}/10^5 \mathrm{yr} \rightarrow \dot{M} = 5 \times 10^{-6} M_{\odot} \mathrm{yr}^{-1} \rightarrow L = \frac{GMM}{R_{\star}} \approx 25 L_{\odot}$$

• FU Ori type outbursts may happen for all protostars providing a solution to the luminosity problem :the luminosity is very high only during short events

The case for episodic accretion

- Thermal instability (Bell & Lin 1994)
- Binary companion (Bonnell & Bastien)
- Gravitational instabilities (Vorobyov & Basu 2005, 2006)
- Planet "blocking" (Lodato & Clarke 2004)

• Zhu, Hartmann et al. 2008-2010: The combined effect of different angular momentum transfer efficiencies of the gravitational instability (GI) and magneto-rotational instability (MRI).

GI: works better >10 AU from the star MRI: works better at <1 AU

MRI is initiated when $T_M > 1400$ K in the inner disc region and the outburst starts. Stops when temperarture drops again.

Episodic accretion: GI & MRI (e.g. Zhu et al. 2010)

A phenomenological model of episodic accretion in hydrodynamic simulations

A phenomenological model of episodic accretion (based on Zhu et al. 2010)

Stamatellos, Whitworth, Hubber, 2011, ApJ

Episodic accretion is initiated when

Λ

$$M_{\rm MRI} \simeq 0.13 \,{\rm M}_{\odot} \,\left(\frac{M_{\star}}{0.2 \,{\rm M}_{\odot}}\right)^{2/3} \,\left(\frac{\dot{M}_{\rm IAD}}{10^{-5} \,{\rm M}_{\odot} \,{\rm yr}^{-1}}\right)^{1/9}$$

 $M_{\rm IAD} \ge M_{\rm MRI} \ (T_M = 1400 \text{ K})$

Duration of an episodic $\Delta t_{\rm MRI} \simeq 0.25 \,\rm kyr \, \left(\frac{\alpha_{\rm MRI}}{0.1}\right)^{-1} \, \left(\frac{M_{\rm MRI}}{0.13 \,\rm M_{\odot}}\right)$

Zhu et al. 2010a

$$\dot{M}_{\star,\text{EA}} = \frac{M_{\text{MRI}}}{\Delta t_{\text{MRI}}} e^{-\frac{(t-t_0)}{\Delta t_{\text{MRI}}}}, \ t_0 < t < t_0 + \Delta t_{\text{MRI}}$$

The importance of radiative feedback from protostars

Simulation III:

Radiative feedback from protostars is fully included; the radiative feedback is not continuous but episodic

Comparison Continuous vs episodic accretion/feeback

The role of episodic accretion in low-mass star formation

- duration of outburst (Δt_{MRI})
- how often an outburst happens (T_{EA})

 $\Delta t_{MRI} << T_{EA}$

 $T_{EA} > t_{dyn} \sim 10^3 yr$

Duration of episodic accretion event

$$\Delta t_{\rm MRI} \simeq 0.25 \,\rm kyr \, \left(\frac{\alpha_{\rm MRI}}{0.1}\right)^{-1} \, \left(\frac{M_{\rm MRI}}{0.13 \,\rm M_{\odot}}\right)$$

Time interval between successive episodic accretion events

$$T_{\rm EA} \simeq 13 \, {\rm kyr} \, \left(\frac{M_{\star}}{0.2 \, {\rm M}_{\odot}} \right)^{2/3} \, \left(\frac{\dot{M}_{_{\rm IAD}}}{10^{-5} \, {\rm M}_{\odot} \, {\rm yr}^{-1}} \right)^{-8/8}$$

Observing fragmenting discs

Stamatellos, Maury et al. 2011, MNRAS

Concluding remarks

Episodic radiative feedback (due to episodic accretion) limits considerably the effects disc heating by the protostar

 Disc fragmentation is still possible; discs fragment to form low-mass stars, brown dwarfs and planetary-mass objects

The frequency of episodic accretion events may regulate low-mass star formation in different environments; where accretion events are more frequent (e.g. in high-density regions) fewer low-mass stars are expected.

Different mechanisms may dominate in different regions?

Observing the early stage of fragmenting discs is possible but improbable due to duration of the process

- $\Delta t_{\text{FRAGM}} = 1.5 \times 10^4 \text{ yr}$
- $\Delta t_{\text{CLASS 0}} = 1.5 \times 10^5 \text{ yr}$
- 10% of young protostars have such discs (enough to give 50% of the brown dwarf population)

~1% of Class 0 objects should have large unstable discs