

Formation and Early Evolution of Very Low Mass Stars and Brown Dwarfs, ESO Garching, October 11-14, 2011

Early evolution of low mass stars and brown dwarfs: an observational overview

Part I:

Main results of the Spitzer "Core to disk" and "Gould's Belt" surveys (PMS stars classification, lifetime, variety of evolved disk)

Part II:

Evolution and mass dependency of the mass accretion rate (Milky Way vs. Magellanic Clouds)

Part III:

Age spread in young massive clusters (the case of NGC3603)

A "collage" of the work of N. Evans & the c2d Team, L. Allen & the GB team, the WFC3 SOC Team, G. Beccari, G. De Marchi, F. Paresce, N. Panagia and many others.....

Part I: Results of the Spitzer c2d and GB surveys

- Focus on Class I to III objects
- For pre-stellar core and Class 0 see talk by P. Andre'

Spitzer c2d and GB surveys

>Observations (IRAC, MIPS, IRS@Spitzer: 3-160µm)

>"Core to disk" (c2d) Survey: Five nearby molecular cloud (Perseus,Ophiuchus,Serpens,Lupus,ChamaeleonII),150 compact molecular cores and ~300 stars in a wide range of evolutionary states

>More clouds were observed in the Gould's Belt (GB) Survey (Musca, Lup V & VI, etc.)

> The five clouds combined contain 1024 YSOs

> There are no more than about 50 (5%) contaminating background galaxies in the sample.

> The sample is complete down to $L_{bol} \approx 0.05 L_{\odot}$ over a wide range of SED type . With better discrimination against galaxies this limit could be lowered to about $10^{-3} L_{\odot}$ (20-30 M_J)

>Appropriate wavelength coverage to study the process of planet formation in disks

	Band	$\lambda_{ m eff}$	$\mathrm{T}_{\mathrm{disk}}$	R _{disk} (AU) around a				
		(μm)	(K)	BD	Low-mass	$1 \ {\rm M}_{\odot}$	F-type	A-type
	J_{2MASS}	1.2	2414	0.001	0.005	0.01	0.04	0.04
TDAC MTPS and TDS $(3.6 - 70.4m)$	H_{2MASS}	1.6	1811	0.002	0.01	0.03	0.09	0.09
Trac, MIPS and IRS $(5.0 - 70 \mu m)$	$K_{s,2MASS}$	2.1	1379	0.004	0.03	0.08	0.22	0.23
remperatures: 100 to 1500 k	IRAC-1	3.6	804	0.007	0.06	0.15	0.44	0.45
Radii: 0.1-30 AU (size of Neptune's orbit)	IRAC-2	4.5	643	0.011	0.10	0.24	0.71	0.72
	IRAC-3	5.8	499	0.018	0.16	0.39	1.14	1.16
	IRAC-4	8.0	362	0.033	0.28	0.69	2.04	2.07
	MIPS-1	24.0	120	0.34	2.9	7.2	21.3	21.7
	MIPS-2	70.0	41	2.90	25.0	60.9	180	183
	MIPS-3	160.0	18	23.70	205	500	1485	1509
I								

PMS star classification

Muzzerolle et al. 2004, Robitaille et al. 2006

c2d results: IR classes

Differences from previous literature

Wilking et al. (1989) who found roughly equal number of Class I and Class II objects in Ophiuchus.

Variations from cloud to cloud

Effects of small number statistics are substantial for Cha II and Lupus.

Perseus stands out as particularly rich in Class I sources.

Evans et al. 2009, ApJ Supp. Ser. 181, 321

The outliers: Lupus V and VI

Total Number of YSO Candidates in the Lupus V and VI Clouds Organized by Lada Class							
Lada Class	Lupus I ^a	Lupus III ^a	Lupus IV ^a	Lupus V	Lupus VI	All c2d clouds ^b	
I	2 (15%)	2 (3%)	1 (8%)	0	0	165 (16%)	
Flat	3 (23%)	6 (9%)	1 (8%)	0	1 (2%)	123 (12%)	
П	6 (47%)	41 (59%)	5 (42%)	9 (21%)	5 (11%)	612 (60%)	
Ш	2 (15%)	20 (29%)	5 (42%)	34 (79%)	39 (87%)	124 (12%)	
Total	13	69	12	43	45	1024	

Why such a high fraction of class III YSOs?

1) Higher fraction of binaries (Monin et al. 2007, Kraus & Ireland 2010, Bouwman et al. 2006): UNLIKELY (more data needed)

2) Disk photoevaporation due to nearby OB stars: UNLIKELY

Few OB star within 0.5 pc

No spatial correlation between disk frequency and position of OB stars

4) Higher characteristic stellar mass: might contribute

Lup V & Lup VI 0.5-0.6 M_o

Other Lup clouds 0.2 M_{\odot}

4) Older age: MOST LIKELY (more data needed)

Heiderman et al. 2010: the study SFR vs. gas surface densities for 20 c2d and GB clouds suggests a "threshold" for strong star formation around opticl depth Av = 8 (Onishi et al. 1998; Johnstone et al. 2004; Enoch et al. 2007; Lada et al. 2010; André et al. 2010)

Cloud	Mass above thres.	Fraction of Mass below thres.
Lupus III	95 M $_{\odot}$	90%
Lupus V	0 M $_{\odot}$	100%
Lupus VI	$3.8 M_{\odot}$	99%

The mass above threshold in Lupus V and VI is very small or zero

-> star formation has ceased -> dominance of Class III sources

c2d results: lifetimes

Method: Lifetimes are estimates as ratios of number counts in each class with respect to class II counts multiplied by the lifetime for Class II

Assumptions:

-Lifetime of Class II = 2 Myrs (possible range 1.5-3 Myr, see talk by I. Baraffe)

-star formation has been continuous over a period longer than the age of Class II sources

-we can average all our clouds

-all objects of all masses behave identically

			Nur	Number of YSOs by Cloud and Class			he region, such as turbulence, etc).		
Cloud	I	Flat	П	Ш	t(I)	t(F)			
					(Myr)	(Myr)			
Cha II	2	1	19	4	0.21	0.11	Augusta lifetiment hafana		
Lupus ^a	5	10	52	27	0.19	0.38	Average litetimes defore		
Perseus	87	42	225	31	0.77	0.37	and after extinction correction:		
Serpens	36	23	140	28	0.51	0.33			
Ophiuchus	35	47	176	34	0.40	0.53	Class 0 0.16 Myr - 0.10 Myr		
Total	165	123	612	124	0.54	0.40			
After E.C. ^b					t'(I)	t'(F)	Class I 0.54 Myr - 0.44 Myr		
Cha II	1	2	18	5	0.11	0.22	Flat 0.40 Mvr - 0.35 Mvr		
Lupus ^a	5	7	54	28	0.19	0.26			
Perseus	76	35	244	30	0.62	0.29			
Serpens	32	22	140	33	0.46	0.31			
Ophiuchus	27	44	179	42	0.30	0.49			
Total	141	110	635	138	0.44	0.35			

Previous estimates: 0.01 My for Class 0 (Andre' et al. 1993), 0.1-0.2 for Class I/Flat (Keynon & Hartmann 1995), 0.39 Myr for Class I by (Wilking et al. 1989), 0.25-0.67 Myr (Hatchell et al. 2007)

Waiting for GB result for cancellation/better estimate of assumption effects....

The traditional evolution from Class II to Class III does not capture the diversity in SEDs found in the c2d survey (Merin et al., in preparation)

ROXR1-29 K6 Av=10.-8log $\lambda F_{\lambda}~(\text{erg/s/cm}^2)$ α_{excess} -90 -10-11 $\lambda_{Turn-off}$ -1210 100 1 Wavelength λ (μ m)

• $\lambda_{turn-off}$ is the last photospheric wavelength in μm • α_{excess} is the SED slope in $\lambda \cdot F_{\lambda}$ long-ward than $\lambda_{turn-off}$

More detailed description of the inner disks !

Top-right: Fang et al. (2009) Bottom-left: Muzerolle et al. (2010) Bottom right: Cieza et al. (2010)

Better selection for "cold" disk!

Merin et al., in preparation

.....and the distribution of evolutionary stages suggests different possible evolutionary paths from CTTs to WTTs and Debris disks !

Sample:

>15 disk with inner hole from c2d: Optical spectra, 2MASS, and Spitzer photometry, millimeter continuum observations, and IRS 5-35 µm spectra

> Samples by Brown et al. (2007) and Kim et al. (2009)

Results:

1) A large fraction (75%) of the cold disks are accreting, suggesting that gas is flowing through the dust depleted hole.

2) More massive disks tend to have larger holes.

10.0

1.0

0.1

 $M_{\rm Disk}~(10^{-3}~M_{\odot})$

3)The sizes of the inner holes scale linearly with the stellar mass.

10

 R_{Hole} (AU)

Hole sizes in the c2d sample are generally in better agreement with exoplanet orbit radii (<u>http://exoplanet.eu</u>).

Part II: Mass accretion rates

Milky Way vs. Magellanic Clouds

Photometric determination of the mass accretion rate

• H_{α} luminosity $L_{H\alpha}$ gives accretion luminosity L_{acc} via relationship calibrated using spectroscopic data (e.g. Dahm 2008)

 $Log (L_{acc}) = Log (L_{H\alpha}) + (1.72 \pm 0.47)$

• Mass, radius and age from PMS isochrones in HR diagram

• Free fall equation gives mass accretion rate Macc

$$L_{acc} \simeq \frac{GM_*\dot{M}}{R_*} \left(1 - \frac{R_*}{R_{in}}\right)$$

• We can study the mass accretion process

in distant galactic and extra-galactic star-forming regions for very large PMS star samples using HST.

Mass accretion rate vs. stellar mass

See talks by Alcala', De Marchi, Hartmann, Manara, Natta

Mass accretion rate vs. stellar mass in the LMC

Timescale of mass accretion and IR excess in the MW

-Observational evidences point to many process taking place in young disks: disappearance of the inner hot dust, dust crystallization, radial mixing, transition from flared to flat geometry, etc.

100 100 Accreting stars vs IRAC excess [%] $\tau_{\rm acc}$ 80 80 ^{*t*}dust Accreting stars [%] 60 60 40 40 20 20 0 ſ 10 0 5

-The inner disks disappear at a constant rate from 1 to 10 Myr.

> Sample: PMS stars in the spectral type range KO-M5, ages between 1-30 Myr.

> The mass accretion appears to cease (or drop below detectable level) earlier than the dust is dissipated in the inner disk.

>Assuming an exponential decay, the mass accretion timescale is 2.3 Myr, compared to a near-to-mid IR excess timescale of 3 Myr.

Fedele et al. 2010, A&A 510, 7

Adapted from Sicilia-Aguilar et al. 2006, 2010

De Marchi et al, 2011

Mass accretion rate evolution: samples in the range 1-2 M_{\odot}

Galactic region	Typical Age (Myr)	Median log <i>॑M</i> (M _☉ /yr)	Number of members with $1 \le M/M_{\odot} \le 2$	Ref.	Milky Way
ρ -Ophiuchus [†] (ρ -Oph)	0.5	-7.95	4	Natta et al. (2006)	
Orion Nebula Cluster (ONC-young) Orion Nebula Cluster (ONC-old) [‡]	3 12	-7.60 -9.00	9 9	Panagia et al. 2011 (in preparation)	
IC 348 Lupus III (LupIII) σ-Orionis (σ-Ori) Taurus (Tau)	2-3	-7.81	9	Dahm (2008) Herczeg & Hillenbrand (2008) Rigliaco et al. (2011) Calvet et al. (2004)	
Trumpler 37 (Tr37) Chamaeleon II (ChaII)	4	-9.49	88	Sicilia-Aguilar et al. (200 Spezzi et al. (2008)	06, 2010); Barentsen et al. (2011)
η-Chamaeleontis (η-Cha) Orion OB 1c Association (Ori-OB1c) λ-Orionis ($λ$ -Ori)	5-7	-8.98	7	Jayawardhana et al. (2006) Calvet et al. (2004) Calvet et al. (2004)	
Hydrae (Hya)	8-10	-10.52	4	Pinzón et al. (2007); Jayawardhana et al. (2006)	
β-Pictoris (β-Pic) NGC 7160	12	-10.26	5	Pinzón et al. (2007); Sicilia-Aguilar et al. (2010) Sicilia-Aguilar et al. (2010)	
Lower Centaurus Crux (LCC) Upper Centaurus Lupus (UCL)	16	-8.32	40	Pinzón et al. (2007) Pinzón et al. (2007)	
Tucana-Horologium (Tuc-Hor)	30	-11.03	8	Pinzón et al. (2007); Jaya	awardhana et al. (2006)

Magellanic Clouds

MC region	Typical Age (Myr)	Median logM (M _☉ /yr)	Number of member with $1 \le M/M_{\odot} \le 2$	Ref.
LMC #1	13	-7.6	490	Spezzi et al. 2011
LMC #2	9	-7.4	325	Spezzi et al. 2011
LMC #3-Pop.1	8	-7.1	96	Spezzi et al. 2011
LMC #3 Pop.2	6	-7.2	146	Spezzi et al. 2011
SN1987A	14	-7.6	104	De Marchi et al. 2010
NCG346-young (SMC)	1	-7.1	350	De Marchi et al. 2011
NCG346-old (SMC)	20	-7.7	330	De Marchi et al. 2011

Mass accretion rate evolution: MW vs. MCs (mass range 1-2 M_{\odot})

Part III: Age spread in young massive clusters The case of NGC3603 and more...

Larger age spread in young massive clusters: the case of NGC3603

Right Ascension: $11^{h} 15^{m} 7^{s}$ Declination: $-61^{\circ} 15' 30''$ Distance: $7\pm1 \text{ kpc}$ Type: Galactic star-burst cluster Total Mass: $\sim10^{4} M_{\odot}$ Previous age estimates: 1-3 Myr? But...

See poster by G. Beccari

The blue supergiant Sher25 is 10 Myr old and many other blue supergiants appear associated with this cluster Proper motion studies indicate a second population with age ~4-5 Myr

Bolometric luminosity:

100 times that of Orion 0.1 times that of 30 Doradus Stellar content:

3 Wolf-Rayet stars

6 O3-type stars

numerous late O-type stars

present day known mass function extending down to ~0.2 M_{\odot}

Orion

Ongoing star formation for at least 10-30 Myrs

See poster by G. Beccari

There is evidences of multiple star formation in:

30 Doradus (LMC; De Marchi et al., 2011) M16 (Eagle Nebula, De marchi et al. 2011) NGC602 (SMC; Beccari et al., submitted) NGC346 (Small Magellanic Cloud; De Marchi et al. 2011) LH95 (LMC, Da Rio et al. 2010) Sandage 96 (NGC2403; Vinko' et al. 2009) Age spread of 300 Myr in other LMC clusters (Milone et al. 2009) Multiple stellar population of galactic GCs (Piotto 2008, Lee et al. 2009)

Is continuous generation of stars the dominant mechanism of star formation? We might need to revise the assumption that clusters are simple coeval stellar populations! **Part I:** connection between SED variety and disk dissipation mechanisms Herschel & ALMA (follow-up spectroscopy of Spitzer c2d abd GB surveys)

Part II: Why the typical mass accretion rate of young stars in the MCs appear higher than in their galactic counterpart?
Spectroscopy of roughly solar mass stars in the MCs will be possible only with JWST or E-ELT
Some attempt with Xshooter (S. Randich et al.)
GAIA

Part III: Do we need to revise the assumption that clusters are simple coeval stellar populations? GAIA will help with:

-Better constraints on the distance and kinematics/membership of SFRs

-Better age/mass estimates

-Reducing the uncertainty in the typical M_{acc}

-Better PMS evolutionary models thanks to the Gaia galactic dataset

Disk variety: togliere

Grain growth and settling in disks
 Photo-evaporation of disks by UV stellar flux

3) Disruption of disks by stellar companions/flybys4) Planet formation

Evans et al. 2009, arXiv:0901.169 and ref. therein: The disktionary

Caveats on isochronal ages

- Photometric uncertainties, interstellar reddening effects, binarity, crowding, variability, accretion, etc. (e.g., Da Rio et al. 2010, ApJ 723, 166: age spread 2-4 Myr)
- 2) Age dispersion of a given stellar population depends on the size of the region. (Elmegreen 2000). The typical size of our region is 162"×162" (i.e. about 100 pc at the LMC distance) and an age dispersion up to a few to 10 Myr inside each region are to be expected.
- 3) Baraffe et al. (2009): vigorous episodes of mass accretion at early stages of the stellar life (<1 Myr) can produce a luminosity spread in the HR diagram equivalent to a ~10 Myr age spread -> ages below a few Myr are highly uncertain and absolute ages are hard to determine, though relative ages are still reliable.
- 4) Most of the PMS stars in our sample are G-type (~80%) or late K-type stars (~20%). Hartmann (2003) discussed the uncertainties in the birth line of G-type stars (T_{eff}<5400 K), which results in a overestimate of their ages.

> Ages of statistical samples are, in principle, reliable and the global age differences between regions are real (see, e.g., Mayne et al. 2007).

The Spitzer-SAGE survey of the LMC

Whitney et al. 2008, AJ 136, 18W