

# Dynamical evolution of very low mass binaries in open clusters

### Richard Parker<sup>1</sup>

In collaboration with Simon Goodwin<sup>2</sup>

- 1 ETH Zürich, Switzerland (email: rparker@phys.ethz.ch)
- 2 University of Sheffield, UK

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

## Why Open Star Clusters?

- Most stars form in clusters, or loose associations
- Dense clusters undergo dynamical evolution
- This affects stars & brown dwarfs
- Can cluster evolution significantly process very low mass binaries?



(M. McCaughrean/ESO 2001)



### **VLM/BD-BD** Binaries



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

# Binary Stars: the Field

- Fischer & Marcy (1992) collated data from several sources
- M-dwarfs binary fraction 40%
- Log-normal separation distribution???



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

## VLM/BD-BD Binaries

- Evidence of a discontinuity between stars & BDs (Thies & Kroupa 2007)?
- f<sub>bin</sub> = 0.15, or 0.26?
- Two fits to the separation distribution: Basri & Reiners 2006, or Thies & Kroupa 2007
- Can an initial separation distribution be dynamically modified to match the observations?



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

# Simulation Set-Up

- N-body simulations (no gas); 10 Myr
- 2000 stars and VLM objects
- Distribute mass in a Plummer sphere with characteristic halfmass radius
- Plummer sphere is a good approximation for Orion today; however, many young clusters (e.g. Taurus-Auriga) appear to be very substructured
- Choose masses from VLMB archive
- Assume an initial binary fraction (50%, 25%, 15%)
- Assume a separation distribution (DM91, TK07, or VLMB archive)



### Simulation Set-Up



(a) Plummer

(b) fractal

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

# Simulation Set-Up

- N-body simulations (no gas); 10 Myr
- 2000 stars and VLM objects
- Distribute mass in a Plummer sphere with characteristic halfmass radius
- Plummer sphere is a good approximation for Orion today; however, many young clusters (e.g. Taurus-Auriga) appear to be very substructured
- Choose masses from VLMB archive
- Assume an initial binary fraction (50%, 25%, 15%)
- Assume a separation distribution (DM91, TK07, or VLMB archive)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

### VLMB archive, $f_{bin} = 25\%$



### Thies & Kroupa 2007, $f_{bin} = 15\%$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH



### Duquennoy & Mayor 1991, $f_{bin} = 50\%$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich





### Summary

- If all VLMBs form in dense clusters (unlikely see Eli Bressert's talk), then a stellar-like population can be processed to the Basri & Reiners (2006) distribution
- Dynamics cant explain why VLMB separation distribution is different to that of stars
- However, recent observations (Bergfors et al 2010) seem to suggest the M-dwarf separation distribution sits somewhere between that for the G-dwarfs and the VLMBs
- Details in Parker & Goodwin 2011, MNRAS, 411, 891

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

### **Separation Distribution**

- Over-production (n) do (n) do (1) do (
- Wide field binaries not recovered



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

### Comparison with Orion





### Alternative Hypothesis

#### "Star clusters are not dense enough to process an initial binary population. Orion formed with its current density ( $r_{1/2} = 0.8pc$ ), and the field population is the direct product of the star formation process"

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

### Initial distribution = Field

- Initial half-mass radius = 0.8pc
- Wide field binaries still not recovered





### **Dynamical Mixing**





### **Dynamical Mixing**



#### Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Star Formation Constraints

- Not possible for stars to form from a single population
- Clusters with different densities process
  populations differently
- Field population is the sum of various star forming modes and regions (c.f. Brandner & Köhler 1998)
- See Parker, Goodwin, Kroupa & Kouwenhoven (2009, MNRAS, 397, 1577)
  - Also see Kouwenhoven, Goodwin, Parker, Davies, Malmberg & Kroupa (2010, MNRAS, 404, 1835)



### **VLM/BD-BD** Binaries





### **VLM/BD-BD** Binaries





### Unclear from dynamical simulations whether they are a different population

- In order to match the observed separation distributions, would probably have to form with a binary fraction of 50%
- Details in Parker & Goodwin (2010, MNRAS accepted, arXiv: 1009.3110)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Kozai (1962) quantified how the orbits of inclined asteroids were affected by Jupiter
- If the orbit is inclined by more than 39.23°, a cyclical exchange of angular momentum to the asteroid occurs
- Causes eccentricity of the orbit to vary periodically
- Same effect predicted for planetary systems orbiting a binary component







Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich



### The Kozai Mechanism

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

E



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- $R_{H} = 0.1 pc$
- G, A and F stars affected more than Mdwarfs



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- R<sub>H</sub> = 0.2pc
- G, A and F stars affected more than Mdwarfs



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- $R_{H} = 0.4 pc$
- Mass dependence no longer there





- Kozai mechanism likely to occur in young planetary systems orbiting binary stars
- Mechanism leads to eccentricity fluctuations in orbit (Malmberg, Davies & Chambers 2007; Malmberg & Davies 2009, Malmberg, Davies & Heggie 2010)
- Planets in 100au+ binary systems most susceptible
- See Parker & Goodwin (2009, MNRAS, 397, 1041) for further info





- Studying the dynamical interactions in star clusters places strong constraints on the star formation process
- Most stars form in clusters therefore, dynamical evolution will also affect young planetary systems
- Future work:
  - include gas potential in simulations
  - model mass distribution as a fractal
  - model wider mass range of clusters (e.g. R136/ Westerlund 1) on GPUs
  - Add planets directly to simulations