Disks, accretion and ejection in BD/VLM stars

Antonella Natta

Arcetri & DIAS

BDs/VLMS have disks, accrete and eject matter

Why is it interesting?

Relevance for formation mechanism: same as stars?

And for disk physics (large leverage)

Can BDs form planets ?

First detections of <u>dusty</u> disks from near&mid-IR excess

✓ Ground-based & ISO

Comeron et al. 1999, 2000 Natta & Testi 2001 Natta et al. 2002

Spitzer

Large samples (statistics)
 SEDs up to mid-IR
 Complete to ~20-30 M_J (nearby star-forming regions)

Fraction of disks similar to TTS

No disk masses No disk radii (R>10 AU)

Herschel

✓ ~ 50 BDs:

- 80% detected at 70 mic
- 30 % detected at 160 mic
- 🗸 Masses: very low
- ✓ No need for settling

P. Harvey: GTO program (Poster #21)

Sub-mm (Scuba-2)

- 7 new objects (3 in Taurus and 4 in TWA) with SCUBA-2 (850mic)
- Detections: 2 in Taurus, 0 in TWA
- Disk masses of BDs: Md/M*
 <<0.1
- ✓ Mdisk< 1 M_J

Mohanty et al. 2011 (talk)

Low disk masses

No Jupiter-mass planets
Earths?
Planetesimals?

Grain evolution

 From SEDs: evidence of sedimentation, faster than in TTS

Szucs et al. 2010: both low-mass (G5¹⁰M4.5) and VLMO¹⁰ (M4.75-M9.5) need grain sedimentation, VLMOs more so than low-mass stars.

Silicates

 ✓ 10 mic silicates more evolved than in TTS

Pascucci et al. 2009, see also Poster #37 by Oliveira

Pebbles in BD disks?

- Evidence of mm-size grains in the outer disks of TTS: impossible!
- Grain growth is controlled by gasdust coupling (gas density and motions)
 - Coalescence
 - Fragmentation
 - Radial drift
- Model predictions for low-mass disks in BD: no growth!
- 2MASS 0444+2512: detected at 450,850,1.3mm, 3.47mm (see Sholz et al. 2006, Bouy et al.2008, Mohanty et al. 2011): shallow (sub)-

mm spectrum

4 BDs with ALMA Early Science

Ricci et al., 2010, 2011 etc. (ESO), see poster #43 and talk by Testi Birnstiel et al. 2010, 2011 etc., Pinilla et al. 2011 (Heidelberg) If BD disks have mm-size grains (as TTS disks), this is an indication that they can form planetesimals & earths

We do not understand how

Accretion

- Many young BDs have evidence of accretion
- Macc in BDs is lower than in more massive stars: Macc
 Mstar²
- ✓ Macc decreases on average with time also for BDs
- The fraction of accreting BDs is lower in older star forming regions
- There are BDs with (relatively) high accretion rates; some very old ?

Statistics has improved, but most Macc derived from Halpha

X-Shooter spectra

- Echelle spectrometer on UT2/ESC
- Resolution 4000-9000 (75-33 km/s)
- Good sensitivity
- Simultaneous coverage from 300-2400nm (U-K)

Direct measurement of Lacc

Template (Class III) + BC from slab model

Xshooter sample: few tens TTS, ~10 BDs

 Improved estimates of secondary accretion indicators into BD regimes

Rigliaco et al. 2010 and in prep.

Physical conditions of the emitting gas

We need predictions of line intensities

BDs have jets : spectroastrometry in forbidden optical lines

Object	Spectral Type	Estimated Mass (M _{jup})	Li	10 CO 2-1
ISO-Cha1 217	M6.2	80 ¹	[\$ 6	
2MA551207-3932	M8	242	1	
ρ-Oph 102	14.6*	60 ³	[(
o-Oph 32	M8	40 ³	[(
LS-RCrA 1	M6.5	35-724	Н	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	-			Phan-Bao et al. 2008

Poster #51 (Whelan) Very similar to TTS jets Fig. t.— An overlay of the J-band (1.25 μ m) near-infrared Two Micron All Sky Survey (2MASS) image and the integrated intensity in the carbon monoxide (CO J = 2 - 1) line emission from 3.8 to 7.7 km s⁻¹ line-of-sight velocities. The blue and red contours represent the blue-shifted (integrated over 3.8 and 5.9 km s⁻¹) and red-shifted (integrated over 5.9 and 7.7 km s⁻¹) emissions, respectively. The contours are 3,6,9,...times the rms of 0.15 Jy beam⁻¹ km s⁻¹. The brown dwarf is visible in the J-band image. The position angle of the outflow is about 3°. The peaks of the blueand red-shifted components are symmetric to the center of the brown dwarf with an offset of 10″. The synthesized beam is shown in the bottom left corner.

 α (J2000)

Mwind ~ Macc

Mass Accretion and Mass Loss

×Hartigan et al. 1995 (TTS in Taurus)

Herczeg &Hillenbrand 2008(0.035-0.17Msun)

Whelan et al.(0.035-0.08Msun)

➤ Bacciotti et al.2011 (0.5, 0.13Msun)

Rigliaco et al.
 in prep
 (0.16,0.2Msun)

There are monsters, more at low Macc (?)

X-Shooter provides simultaneously accretion and outflow measurements

Summary

Formation process(es)

- BDs have disks, accrete and eject matter
- So far, BDs behave like TTS
- There are trends with the mass of the central object, but no discontinuities
- It is possible that we have not reached the "critical" mass

✓ Disk physics and evolution:

- BD disks have very low mass (no Jupiters)
- If BD disks have mm-size grains, this will set strong constraints on grain evolution: maybe easier than we think to form planetesimals in all disks
- Mass ejections in BDs: several objects with low Macc have strong mass-loss