# Multiple Star Formation to the Bottom of the IMF

#### Adam Kraus

Hubble Fellow, University of Hawaii-IfA

Lynne Hillenbrand (Caltech)



(Credit: A. Cooper, Keck Observatory)

# Multiplicity is a Test of **Star Formation Processes**

- Frequency (Implications for the Initial Mass Function, Ubiguity of Sun-like (Single) Star Formation, Planet Formation)
- Separations (Sizes of Protostellar Cores, Dynamical **Evolutionary History**)
- Mass Ratios (Accretion History)
- Mass Dependence (Formation Processes for Stars with Mass <<M<sub>Jeans</sub>)











## **Field Population: Frequency**

The binary frequency declines with mass; the majority of solar-type stars appear to be in binary stars, while binary brown dwarfs are a distinct minority.

Caveats: •Coarse mass sampling •Mass-age degeneracy for L/T dwarfs

•Field is a composite population drawn from widely varying formation environments



Figure from Bouy et al. (2006)

## Field Population: Semimajor Axes



Figure from Duquennoy & Mayor (1991). However, the mean separation for G dwarfs is 30 AU (blue arrow), while for L/T dwarfs the mean separation is 4 AU (red arrow). There are no L/T dwarf binaries wider than ~10-20 AU. In both cases, the binary separation distribution appears to be unimodal and log-normal.



#### **Field Population: Mass Ratios**



Figure from Raghavan et al. (2010).

G dwarf distribution is linear-flat (slope = 0), while L/T dwarf distribution has a clear maximum at  $q\sim 1$  (slope = -4). The mass ratio distributions are power laws with very different exponents.



# Multiplicity in Star-Forming Regions



These regions are the closest we'll ever get to dynamically primordial tests of fragmentation physics. When a protostellar core collapses, do you get one star or two, and what are their properties?

# Multiple Star Formation at the Bottom of the IMF

- High-resolution imaging survey with Keck and Laser Guide Star Adaptive Optics
- Observed 80 low-mass (<0.12 M<sub>sun</sub>) members of Taurus and Upper Sco

#### Goals:

- How does the outcome of multiple star formation depend on the system mass?
- Does the binary frequency decline through the substellar regime?

Upper Scorpius OB Association (T. Preibisch)



## **Binary Systems**







V410 X-ray3 (0.08+0.06 Msun) was very marginally resolved in HST discovery images, but is clearly elongated in K and clearly resolved in H and J at Keck.

#### **Candidate Companions**



- Quite a few binary companions at small separations, a few at wider separations
- No binary companions to targets with M<70 M<sub>Jup</sub>
- Many faint/distant sources which are most likely background stars
- A few close/faint sources (None are comoving - I didn't find any 2M1207b analogs.)

Red: Candidate Companions Dashed Lines: Detection Limits

#### Expanded Sample: 513 VLMS/BDs



Everything I could find in Taurus, USco, Cha-I. (Kohler, Biller, Konopacky, Ahmic, Lafreniere, numerous others, and several of my own previous surveys.)

#### **Bayesian Analysis**

Histograms are not ideal. Since data is rarely uniform, you end up either using dubious completeness corrections or degrading the most sensitive limits.

The answer is Bayes' theorem:

#### $P(model \mid data) \propto P(data \mid model)P(model)$

#### **Bayesian Analysis**

Model the binary population in terms of four parameters:

- The total binary frequency F
- A power-law mass ratio distribution with exponent γ
- A log-normal separation distribution with mean log(µ) and standard deviation  $\sigma_{log(s)}$

$$N(q,s) \propto F \times q^{\gamma} \times \exp\left(\frac{(\log(s) - \log(\mu))^2}{2\sigma_{\log(s)}^2}\right)$$

#### **Bayesian Analysis**

Histograms are not ideal. Since data is rarely uniform, you end up either using dubious completeness corrections or degrading the most sensitive limits.

The answer is Bayes' theorem:

#### $P(model \mid data) \propto P(data \mid model)P(model)$

The result isn't a PDF for the population, but rather a PDF for the parameters that *describe* the population.

For more math: Allen (2007), Kraus (2009), Kraus et al. (2011).





0.15-0.3 M<sub>sun</sub>

#### **Bayesian Results** 0.3-0.5 M<sub>sun</sub> Frequency vs **Mean Separation**

For lower-mass subsamples, the locus of possible values moves in and downward, showing a mass dependent trend toward lower mean separations and/or lower frequencies.

Note: More imaging data isn't the 0.07-0.15 M<sub>sun</sub> answer to the frequency/ separation degeneracy; we need RV surveys to break it and measure unambiguous properties for the binary population.

#### Bayesian Results Frequency vs Mean Separation

<0.07 M<sub>sun</sub>

# Binary Fraction (%)

0.07-0.15 M<sub>sun</sub>





#### Bayesian Results Frequency vs Gamma

I expected a trend for steeper mass ratio distributions (more peaked at unity) at lower masses, but it's a little more complicated.

In the 0.07-0.15 Msun subsample, 10/11 binaries with separations <25 AU have mass ratios near unity, while 4/5 binaries with separations >25 AU have mass ratios <0.5. (You hardly see any >25 AU binaries in this mass range in the field.)

Maybe wide/low-q systems form earlier and differently?



earlier and differently?

#### **Implications for Star Formation**

- Field mass dependence of features is primordial, not dynamical. Lower mass => lower frequencies, smaller separations. VLM cores are smaller when they undergo fragmentation?
- All companion masses are equally probable down to M<sub>prim</sub>~0.3 M<sub>sun</sub>, but then equal masses become increasingly probable. *Fragmentation occurs later, while less mass is still in the envelope?*

#### Properties are continuous with mass. Stars/BDs form in a similar manner; no special formation process?

Next: Run simulated binary populations through the same statistical machinery. Will the confidence intervals overlap with observations?

