Dynamical masses of the low-mass triple TWA 5

Rainer Köhler, Max-Planck-Institut für Astronomie, Heidelberg, Germany. koehler@mpia.de Serge Correia, Leibniz-Institut für Astrophysik Potsdam (AIP), Germany Thorsten Ratzka, Universitäts-Sternwarte München, Germany Monika G. Petr-Gotzens ESO, Garching bei München, Germany

Introduction

TWA5 is one of the five original members of the TW Hydrae association. It is composed of a pair of low-mass stars (spectral type M1.5) and a brown dwarf (~M8.5). The short orbital period of the close pair (6 years) makes it an ideal target for a dynamical mass determination. Its semi-major axis of only 60 mas, however, makes it a challenge to spatially resolve the binary, even on large telescopes. Konopacky et al. (2007, AJ 133, 2008) presented an orbital solution for the inner binary, based on data collected with the 10 m-Keck-Telescope. Vogt et al. observed TWA 5 in 2007 with NACO at the VLT in the K-band, where the diffraction limit of the telescope is larger than the separation of the binary. We observed TWA 5 in the H-band in January and May 2011, and resolved the close binary.

Astrometric measurements of TWA 5Aa+b and the best orbital solution. Data from Konopacky et al. are shown in orange, new NACO data are red. The grey circle marks separations too close for NACO. The dashed line indicates the line of nodes.

Results – the orbit of TWA 5Aab

Semi-major axis: $60.6 \pm 0.3 \text{ mas} = 2.7 \pm 0.3 \text{ AU}$ Period: $5.99 \pm 0.02 \text{ years}$ System Mass: $0.53 \pm 0.15 \text{ M}_{\odot}$ Inclination: $98.4 \pm 0.2^{\circ}$ Eccentricity: 0.720 ± 0.005

Outlook

We will continue to monitor TWA5 and measure the positions of all three components relative to each other. The third component TWA5B will serve as astrometric reference to determine the motion of TWA5Aa/b around their center of mass. This will allow us to measure the mass ratio of TWA5Aa/b and compute the individual masses of TWA5Aa and TWA5Ab.

We can use Kepler's third law to estimate the period of the orbit of TWA 5B. With the observed separation, we arrive at about 1100 years. Determining the orbit of TWA 5B and its mass is therefore a long-term project.