Dust in High Redshift Galaxies

Alexandra Pope (UMass Amherst) ISM conference – ESO Santiago June 29, 2011

Cosmic Infrared Background*

* Cosmic Infrared Background (CIB) = Extragalactic Background Light (EBL)

Dust-obscured activity dominates the build-up of stellar mass and black holes in galaxies

Dust-obscured activity dominates the build-up of stellar mass and black holes in galaxies

Most stellar mass and AGN growth occurs at z~1-3

Ultra-luminous infrared galaxies (ULIRGs)

"A rose by any other name would smell as sweet "

Spectral energy distribution (SED) of high redshift submillimeter galaxies (SMGs)

(ISO) Mid-infrared Spectroscopy Local ULIRGs

PAHs are sensitive to the radiation field and the dust grain size distribution

PAHs as an ISM diagnostic

Hollenbach & Tielens 1997

Spitzer IRS spectroscopy Detailed studies of local galaxies

PAHs are found in PDRs and diffuse regions of star forming galaxies

PAH/L_{IR} ratio depends on metallicity

Spitzer Mid-IR Spectroscopy Extending out to high redshift

The mid-IR spectrum can be decomposed into two main components:

1. Starburst:

Polycyclic aromatic hydrocarbons (PAH) emission lines + extinction Main lines at 6.2, 7.7, 8.6 and 11.3μm

2. <u>AGN</u>: power-law + extinction

Spitzer Mid-IR Spectroscopy of SMGs

<u>Starburst</u>: Polycyclic aromatic hydrocarbons (PAH) + extinction

SMGs: Dust temperature bias

Link between dust and gas

Link between dust and gas

Link between dust and gas

IR SED

- IRS gives a good estimate of AGN_{mid-IR} but we care about the AGN contribution to L_{IR}(8-1000µm)
- Extrapolate to far-IR:
- e.g. $AGN_{mid-IR} \sim 50\%$
- \Rightarrow AGN_{total IR} ~ 10-20%
- AGN rarely dominate bolometric luminosity

Herschel Space Observatory

 10^{0}

 10^{1}

Deep high(er) resolution far-IR

imaging at:

70, 100, 160, 250, 350, 500µm

Accurate L_{IR} and SFR for individual galaxies

> Dust properties: T_{dust} , β , M_{dust}

GOODS Extragalactic Mid-IR Spectral Library

- 150 sources in GOODS-N and ECDFS observed with Spitzer/IRS
- All data reduced and lines measured in a uniform way
- Spectral decomposition to get AGN fraction, L_{PAH}, L₈, etc.

SED fitting with Spitzer/IRS + Herschel

Influence of the AGN on IR colors

Influence of the AGN on IR colors

Influence of the AGN on IR colors

Oliver+2010

Large Millimeter Telescope (LMT)

- 50m Antenna
 - Operation: 4mm-0.85mm
 - Active Primary Surface

75 microns rms.

- Located in Mexico
 - Excellent mm-wave site
 - High Altitude (15,000 ft)
 - +19 deg. Latitude
- State-of-the-art instrumentation: AzTEC 1.1mm camera Redshift Search Receiver (RSR)

LMT First Light with RSR!

LMT First Light with RSR!

AzTEC in the LMT Receiver Cabin

Summary

- Strong PAH emission is much more prevalent at high redshift compared to locally different physical conditions/mechanisms for star formation
- We see a PAH deficit similar to [CII] (also tracing PDRs) high and low redshift galaxies are unified in this trend when we consider the molecular gas supply
- Uniformity in SEDs at z=1-2 in that AGN fraction does not appear to strongly affect the average dust temperature – Host galaxy dominates the submm light or more extended dust
- ALMA+large single dish submm telescopes will allow us to push studies of dust down to typical L^{*} galaxies that are dominating the SFRD