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M104 (“Sombrero”) has 
~1900 of these

M87 (Virgo cD 
supergiant) has ~13,000

NGC 4874 (Coma cluster cD) 
has  23,000

Studying the ensembles of globular clusters in galaxies is a hybrid field 
mixing stellar populations with galaxy structure and evolution  



NGC 3311/3309  d = 50 Mpc

         Hydra I cluster

GCs are mostly starlike for 

D > 15 Mpc (ground-based) 

D > 80 Mpc (HST)

Visible as a statistical excess 
of point sources spatially 
concentrated around the host 
galaxy

Present day:  < 1% of total 
stellar mass

Initially:  > 10% ?

Gemini-S + GMOS (E.H.Wehner & W.E.Harris)



Formation redshifts   z = 10-5  (blue)   ages 12-13 Gyr
                                          5-2  (red)    ages 10-12 Gyr

Composite data from 6 BCGs (Harris 2009, ApJ)

Bimodality:  standard, near-universal “blue” and “red” sequences
                                  mean [Fe/H]  ~  -1.5          -0.5

Weak metallicity gradients  <Fe/H>  ~  R-0.1

Two distinct formation 
epochs?  Doubtful …



Host environments should be  >~109 M0 
gas disks; all GCs assumed to form in 
mergers from beginning to end

External reionization unimportant; 
massive host dwarfs self-shielded

NGC(t)  ~  Merger rate x cloud mass

Semi-realistic bimodality emerges 
naturally though not every time

Realistic mass distributions and spatial 
distributions

Too many young, metal-rich GCs?

Muratov & Gnedin 2010, ApJ 718, 1266

GC Formation:  The Big Picture

Later accretion may add to the low-
[Fe/H] population of halo clusters

[Fe/H] 

age 



Heavy-element 
retention scales as 

~ 1/e  at  4x107 M0 (protocluster)

               4x106 M0 (today’s GC)
fZ ~ exp − k f∗rC
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Internal self-enrichment 
possible, if initial SN ejecta 
can be retained in the 
protocluster during the 
first ~10 Myr (note that the 
dense cloud is mostly 
gaseous if  SFE ~ 0.3) 

Bailin & Harris 2009, 
ApJ 695, 1082 

 Enriched gas will be 
retained if it lies inside an 
“escape radius” where total 
energy < potential energy at 
edge of cloud.  

GC Formation:  The Local Picture:  Self-
Enrichment?



Pre-enrichment = initial cloud metallicity

Self-enrichment = additional metallicity 
generated during formation

UCD and dE,N regime?

Massive-GC regime

Nonlinear mass-
metallicity relation 
expected along both 
sequences, but easily 
visible only on blue 
sequence

7 more cD’s coming!

M104 data and simulation 
(Harris && 2010, MNRAS 
401, 1965)

6 BCGs (Harris 2009)
UCD

M
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Links with UCD/dE regime

NGC 4874 (Coma)
Madrid && 2010,  ApJ &22, 1707

NGC 3311 (Hydra)
Wehner & Harris  2007,  ApJ 668, L35, 1707

Misgeld && 2011, AA 531, A4 

rh 

Hasegan && 2005,  
ApJ 627, 203

σ 

ΜV 

ΜV 

rh > 10 pc



Peng && 2008, ApJ 681, 197

SN = α1

NGC

L∗
Georgiev  && 2010 MNRAS 406, 1967

30th anniversary!  (Harris & van den Bergh 1981)

SN

What determines the total population of GCs in a galaxy?



”The obvious generalization of these results is that most 
galaxies may have been subject to a single, common cluster 
formation efficiency.”  (McLaughlin 1999)

McLaughlin 1999, AJ  117, 2398

Blakeslee, Tonry, & Metzger 1997, 
AJ  114, 482
Blakeslee 1999, AJ 118, 1506

Kavelaars 1999, ASPC 182, 437

Specific frequency and specific mass

-- but efficiency relative to what?

η

σ(cluster)



N(GC)  ~  M(total) =  dark+baryonic ?

Peng && 2008
Georgiev && 2010

Spitler & Forbes 2009, 
MNRAS 392, L1   

M(GC) 

M(tot) 

SM  =  M(GC)/M(stellar) 

M(stellar) 
Curve assumes M(halo)/M(stellar) model 
from vandenBosch && 2007



Peng && 2008 Leauthaud && 2011, ArXiv:1104.0928
COSMOS-z1 model + low-z data

4.5 x 1010 M0
4.5 x 1010 M0

M(halo)

M(∗)
= f (M(halo))

Maximally efficient conversion of 
infalling gas to stars near 1010 L0.  



M(halo)

M(∗)
= f (M(halo))

Assume GC formation is proportional 
to M(halo) instead of stellar mass

NB:  Transition from nuclear star cluster 
to central supermassive black hole  
occurs near 2 x 109 L0 (MV ~ -18.5)

SN = α1

NGC

L∗

= α1α2 (M / L)∗
M(halo)

M(∗)

NGC   =  α2 M(halo)

f(M(halo)) from COSMOS-z1 model



  M(halo)  ~=  2.5 x 109 NGC  ~= 1.7 x 104 MGC(now)

Shock heating + 
AGN feedbackSNe + starburst 

winds + 
photoionization 
feedback

Dekel & Birnboim 2006, MNRAS 368, 2

 Are the most massive protoglobular clusters 
(densities  106 M0/pc3, scale sizes ~ 1 pc) self-
shielded from either extreme?



Harris & Harris 2002 Peng && 2008

Protocluster formation peaks 
earlier than lower-density 
field-star formation 

Earliest epochs less subject to 
external disruption



Burkert & Tremaine 
2010, ApJ 720, 516

NGC

MSMBH

Links with other Galaxy Features

G.Harris & W.Harris 2011, 
MNRAS 410, 2347

NGC

MSMBH

Low-SMBH outliers = pseudobulges?  
(e.g. Milky Way; Kormendy && 2006)

Spitler & Forbes 
2009, MN 392, L1



G.Harris, W.Harris, G.Poole 2011

45 galaxies with all of  N(GC), Re, σe, M(SMBH)

M(SMBH)  vs. N(GC), with errorbars from 
literature:  
Slope  =  0.82 +- 0.06

MCMC formalism:  additional 
cosmic scatter required (or 
quoted uncertainties too small)

 GCs and early SMBH’s have similar 
ages.  How far out into the 
protogalactic halo can the AGN 
influence cluster formation?



Wagner & Bicknell 2011, ApJ 728, 29

Relativistic AGN jet + fractal-like ISM



N(GC)  vs.  M(dyn):      Slope  =  1.02 +- 0.08

Mdyn  = 3 Re σe
2 /G



M(SMBH)  vs. velocity dispersion  σe:
Slope  =  4.79 +- 0.33





GC Scale Sizes and Tidal Limits:  an impending 
confrontation with tidal-limit theory?

rh  ~  Rgc
-0.2   out to 5 Re

<rh>  ~  2.5 pc with large-r “tail”; 
somewhat larger in dwarfs + Puzia et al. N1399 data



Webb, Sills, & Harris 2011 in prep.

M87 GC size measurements from 
extremely deep M87 HST/ACS  images 
in (V,I)       rh measurable to +-0.5 pc

rt ∝ mGC

Mgal


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
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1/3

rgal and Mgal ∝ rgal

⇒ rt ∝ mGC
1/3 rgal

2/3

Projection to 2D 
    rt , rh~  m1/3 Rgc

0.5

Observations:   r ~ Rgc
0.2



M87 system model assuming:

-Observed GC spatial dist’n 
(spherical symmetry)
- Standard GC mass 
distribution function
-King-model cluster profiles, 
standard c-distribution
-Isotropic (or anisotropic) 
velocity distribution with 
measured σ(R) profile
-Tidal radius is set at or near 
perigalacticon
-Assume King rt same as tidal-
theory rt

β = 1 −
σ φ

2 +σθ
2

2σ r
2

In progress:
-HST Cycle 19 imaging of outer halo 
clusters
-N-body integrations



What we need from theory:
  - Full SPH models of GC formation for 105-107 M0 
protoclusters sufficient to resolve star formation 
  - … and coupled to galaxy-scale hierarchical merging 
including AGN feedback.
  - N-body integrations of tidally limited GCs covering 
range of halo locations

Questions
- Does bimodality in color / metallicity result naturally 

from a single formation sequence during hierarchical 
merging?

- Does self-enrichment really work in dense, massive 
protoclusters?  (does star formation last for 10 Myr 
or more in such systems?)

- How much (and how far out into the halo) can 
SMBH/AGN feedback influence GC formation?

- Is the GC population size a good tracer of total galaxy 
mass (including DM)?
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