

Bill Harris, McMaster University ESO June 29, 2011

Clusters are laboratories for galaxy evolution

Globular stellar Clusters are laboratories for stellar

Studying the ensembles of globular clusters in galaxies is a hybrid field mixing stellar populations with galaxy structure and evolution

> M104 ("Sombrero") has ~1900 of these —

> > M87 (Virgo cD supergiant) has ~13,000

> > > NGC 4874 (Coma cluster cD) has 23,000

Gemini-S + GMOS (E.H.Wehner & W.E.Harris)

NGC 3311/3309 d = 50 Mpc Hydra I cluster

GCs are mostly starlike for D > 15 Mpc (ground-based) D > 80 Mpc (HST) Visible as a statistical excess of point sources spatially concentrated around the host galaxy

Present day: < 1% of total stellar mass

Initially: > 10% ?

Bimodality: standard, near-universal "blue" and "red" sequences mean [Fe/H] ~ -1.5 -0.5

Composite data from 6 BCGs (Harris 2009, ApJ)

Formation redshifts z = 10-5 (blue) ages 12-13 Gyr 5-2 (red) ages 10-12 Gyr

Two distinct formation epochs? Doubtful ...

GC Formation: The Big Picture

Muratov & Gnedin 2010, ApJ 718, 1266

Later accretion may add to the low-[Fe/H] population of halo clusters Host environments should be $>\sim 10^9 M_0$ gas disks; all GCs assumed to form in mergers from beginning to end

External reionization unimportant; massive host dwarfs self-shielded

 $N_{gc}(t)$ ~ Merger rate x cloud mass

Semi-realistic bimodality emerges naturally though not every time

Realistic mass distributions and spatial distributions

Too many young, metal-rich GCs?

GC Formation: The Local Picture: Self-Enrichment?

Bailin & Harris 2009, ApJ 695, 1082 Internal self-enrichment possible, if initial SN ejecta can be retained in the protocluster during the first ~10 Myr (note that the dense cloud is mostly gaseous if SFE ~ 0.3)

Enriched gas will be retained if it lies inside an "escape radius" where total energy < potential energy at edge of cloud.

Heavy-element retention scales as

$$f_Z \sim \exp\left\{-\frac{k f_* r_C^{eff}}{M_C}\right\}$$

~ 1/e at 4x10⁷ M₀ (protocluster) 4x10⁶ M₀ (today's GC) Pre-enrichment = initial cloud metallicity Self-enrichment = additional metallicity generated during formation

[Fe/H]

UCD and dE,N regime?

Massive-GC regime

Nonlinear massmetallicity relation expected along both sequences, but easily visible only on blue sequence

M104 data and simulation (Harris && 2010, MNRAS 401, 1965)

7 more cD's coming!

6 BCGs (Harris 2009)

Links with UCD/dE regime

Hasegan && 2005, ApJ 627, 203

NGC 3311 (Hydra) Wehner & Harris 2007, ApJ 668, L35, 1707 Misgeld && 2011, AA 531, A4

What determines the total population of GCs in a galaxy?

$$S_N = \alpha_1 \frac{N_{GC}}{L_*}$$

L [L_☉] 10⁸ 10^{11} 1010 107 109 10^{6} 10⁵ 10^{3} Peng08 Es Mean early-types (Es) 🔺 dEs 🛛 ML07 dEs late-types (S+dIrrs) 🔻 dSphs o Spitler08 E Sms • ∇ Spitler08 S • dIrrs • 10^{2} w/o bGCs no GCCs no GCCs S_N 10 0.1 -22 -20 -18 -16 -14 -12 -10 -8 My [mag] Fraction with GCs: Early-types 0.8 Late-types 10.6 0.4 0.2 -22 -20 -18 -14 -12 -16 -10 -8 M_V [mag]

Georgiev && 2010 MNRAS 406, 1967

30th anniversary! (Harris & van den Bergh 1981)

Specific frequency and specific mass

Kavelaars 1999, ASPC 182, 437

McLaughlin 1999, AJ 117, 2398

"The obvious generalization of these results is that most galaxies may have been subject to a single, common cluster formation efficiency." (McLaughlin 1999)

-- but efficiency relative to what?

N(GC) ~ M(total) = dark+baryonic?

$4.5 \times 10^{10} M_{\odot}$

Peng && 2008

$4.5 \times 10^{10} M_{\odot}$

Leauthaud && 2011, ArXiv:1104.0928 COSMOS-z1 model + low-z data

 \odot

$$\frac{M(halo)}{M(*)} = f(M(halo))$$

Maximally efficient conversion of infalling gas to stars near $10^{10} L_{0.}$

M(halo) ~= $2.5 \times 10^9 N_{GC} \sim = 1.7 \times 10^4 M_{GC}(now)$

Protocluster formation peaks earlier than lower-density field-star formation

Earliest epochs less subject to external disruption

Peng && 2008

Links with other Galaxy Features

45 galaxies with all of N(GC), R_e , σ_e , M(SMBH)

G.Harris, W.Harris, G.Poole 2011

GCs and early SMBH's have similar ages. How far out into the protogalactic halo can the AGN influence cluster formation? M(SMBH) vs. N(GC), with errorbars from literature: Slope = 0.82 +- 0.06

MCMC formalism: additional cosmic scatter required (or quoted uncertainties too small)

Wagner & Bicknell 2011, ApJ 728, 29

Relativistic AGN jet + fractal-like ISM

N(GC) vs. M(dyn): Slope = 1.02 +- 0.08

 $M_{dyn} = 3 R_e \sigma_e^2 / G$

M(SMBH) vs. velocity dispersion σ_e : Slope = 4.79 +- 0.33

GC Scale Sizes and Tidal Limits: an impending confrontation with tidal-limit theory?

 $\langle r_h \rangle \sim 2.5 \text{ pc with large-r "tail";}$ somewhat larger in dwarfs

+ Puzia et al. N1399 data

Webb, Sills, & Harris 2011 in prep.

M87 GC size measurements from extremely deep M87 HST/ACS images in (V,I) \rightarrow r_h measurable to +-0.5 pc

$$r_t \propto \left(\frac{m_{GC}}{M_{gal}}\right)^{1/3} r_{gal}$$
 and $M_{gal} \propto r_{gal}$
 $\Rightarrow r_t \propto m_{GC}^{1/3} r_{gal}^{2/3}$

Projection to 2D \rightarrow r_{t} , $r_{h} \sim m^{1/3} R_{qc}^{0.5}$

Observations: r ~ R_{gc}^{0.2}

$$\beta = 1 - \frac{\sigma_{\phi}^2 + \sigma_{\theta}^2}{2\sigma_r^2}$$

M87 system model assuming:

-Observed GC spatial dist'n (spherical symmetry) - Standard GC mass distribution function -King-model cluster profiles, standard c-distribution -Isotropic (or anisotropic) velocity distribution with measured $\sigma(R)$ profile -Tidal radius is set at or near perigalacticon -Assume King r, same as tidaltheory r₊

In progress: -HST Cycle 19 imaging of outer halo clusters -N-body integrations

Questions

- Does bimodality in color / metallicity result naturally from a *single* formation sequence during hierarchical merging?
- Does self-enrichment really work in dense, massive protoclusters? (does star formation last for 10 Myr or more in such systems?)
- How much (and how far out into the halo) can SMBH/AGN feedback influence GC formation?
- Is the GC population size a good tracer of total galaxy mass (including DM)?

What we need from theory:

- Full SPH models of GC formation for 10^5 - $10^7 M_0$ protoclusters sufficient to resolve star formation

- ... and coupled to galaxy-scale hierarchical merging including AGN feedback.

- N-body integrations of tidally limited GCs covering range of halo locations