The next generation of near-IR spectrographs KMOS and MOONS

> Michele Cirasuolo Royal Observatory Edinburgh

on behalf of KMOS and MOONS Consortia

Feeding the giants...

2012

2017-18

KMOS Near-IR multi-object IFU for VLT To be commissioned in early 2012

PI: R. Sharples Consortium: UK, Germany and ESO

	Specifications
Filters	iz, YJ, H, K, HK
Wavelength coverage	0.8 to 2.5 μm
Spectral Resolution	R~3400,3800,3800 (J,H,K)
Number of IFUs	24
Extent of each IFU	2.8 x 2.8 sq. arc seconds (14 x 14 spatial pixels)
Spatial Sampling	0.2 arc seconds
Patrol field	7.2 arcmin diameter
Close packing of IFUs	3 within 1 sq arcmin
Closest approach of IFUs	2 pairs of IFUs separated by 6 arcsec

Spectral coverage

Observed wavelength λ

KMOS Near-IR multi-object IFU for VLT To be commissioned in early 2012

Credit: A. Glauser

	Specifications
Filters	iz, YJ, H, K, HK
Wavelength coverage	0.8 to 2.5 μm
Spectral Resolution	R~3400,3800,3800 (J,H,K)
Number of IFUs	24
Extent of each IFU	2.8 x 2.8 sq. arc seconds (14 x 14 spatial pixels)
Spatial Sampling	0.2 arc seconds
Patrol field	7.2 arcmin diameter
Close packing of IFUs	3 within 1 sq arcmin
Closest approach of IFUs	2 pairs of IFUs separated by 6 arcsec

Science with KMOS

Galactic Archaeology and nearby galaxies

Spectroscopic chemical abundances and kinematics

Calcium triplet at 8500Å

Molecules such as: CO, SiO, OH, ZrO, VO, C2, CH, CN, C3

Physical properties of galaxies

Spatially resolved spectroscopy on kpc scales:

- Star formation history
- Dynamics
- Extinction
- Metallicity
- Mergers

Cresci et al. 2010 Nature

The first galaxies and the epoch of reionization

15 hours on source integration with SINFONI

The most distant galaxy confirmed spectroscopically at z=8.55

One more step towards the giants...

MOONS

Multi-Object Optical and Near-ir Spectrograph for the VLT

Selected by ESO for a Phase A study as a wide field MOS

• PI: M. Cirasuolo

MOONS

• Consortium: UK, France, Germany, Italy, Netherlands, Portugal, Chile, Switzerland, Sweden

Telescope	VLT 8.2m
Field of view	500 square arcmin
Number of fibers	500 obj + 500 sky
Wavelength simult.	0.5μm -1.8μm
Resolutions	Medium = 3000-5000 High = 10,000 and 20,000
Throughput	> 20%

Galactic Archaeology

Gaia - ESA cornerstone mission:

5-year mission (2013-2018) to map 3D position and velocity of > 1 billion stars

Imaging to measure proper motion on sky over 5yrs

However, on board spectroscopy for radial velocity and chemical abundances limited to bright objects.

Ground-based spectroscopic follow-up is essential, especially for the Bulge and Disc

Galactic Archaeology

Adapted from Recio-Blanco, Hill, Bienaymé 2009

Legacy value

Unique, large samples of galaxies at z>1 to achieve robust measurements of inter-dependence of key physical parameters.

• Accurately determine the critical relation between stellar mass, starformation and metalllicity and the role of feedback.

• Study the crucial effect of the environment

• Unveil the link between mass accretion and central black hole growth

• Determine the Dark Matter halo mass function via galaxy groups as a fundamental test of the Cold Dark Matter paradigm.

• Allow precise clustering measurements and unprecedented estimation of mass and luminosity function at z>1.

The peak epoch of star-formation and mass assembly

MOONS

Follow-up of major imaging surveys/facilities: VISTA, UKIDSS, Herschel, LOFAR, ALMA, eRosita etc

The first galaxies and the epoch of reionization

- \checkmark Spectroscopic confirmation of the most distant galaxies.
- \checkmark Establish the Lyman- α escape fraction and unveil the physics of re-ionization.
- ✓ Measure star-formation and mass assembly of primeval galaxies.
- ✓ Clustering of high-z galaxies and constrain how re-ionization processes.

Conclusions

Commissioning early next year

Unique near-IR IFU multiplex

Large GTO and OT surveys to determine physical and dynamical properties of high-z galaxies

24 IFUs

Aiming to be on sky in 2017-18

Large multiplex, field of view and wavelength coverage

Galactic Archaeology and Gaia follow-up

Trace assembly history of galaxies into the epoch of re-ionization

Cosmology via redshift-space distortions

1000 fibers