HST Proper Motions in the Cores of Globular Clusters

Jay Anderson (STScl)
Roeland van der Marel (STScl)
Rupali Chandar (UToledo)
Holland Ford (JHU)

Workshop on the Dynamics of
Low-Mass Stellar Systems Santigo, Chile
April 6, 2011

Clipper Adventurer

Penguins on Glacier

Mountain Reflections

Blue Icebergs

Organization of Talk

- PMs with HST
- Update on ω Centauri
- Work in progress
- NGC 6752, NGC6341, NGC2808
- Future work

PMs with HST

- All astrometry is differential
- N can be from 50 to 200,000
- PMs can be absolute, though!
- Advantage: stability, strehl
- GB: Seeing, chromatic, isoplanatic patch
- HST: Only breathing
- Complexities
- Distortion (~400 pixels!)
- Undersampling:
- Almost all cameras
- Good PSF models, measuring software
- CCD Irregularities: WFPC2, ACS, WFC3...
- CTE... (a correction! See Anderson \& Bedin 2010)
- Breathing: ~0.01 pixel

$\pi \mathrm{V}_{\mathrm{SYST}}=\sigma / \sqrt{ } \mathrm{N}$

Current HST PM Pr

Membership

- Faint WDs
- Stars at H-burning limit Internal motions in cores of GCs
- IMBHs?
- Distances: $\sigma_{\mathrm{PM}} \longleftrightarrow \sigma_{\mathrm{RV}}$
- Cluster models (anisotropy, equipartition, pop
- Rotation

Absolute PMs

- Globular clusters
- DSphs
- Even M31...

Parallaxes

- Field neutron stars
- 47T (with respect to the SMC)

PMs in ω Cen

Motions in AvdM10

- 4-year baseline

- Catalog of 50,000 stars in core
- No bright/faint (limited by 2006-epoch)
- 100 good within $3.5^{\prime \prime}$

More observations!

- WFC3 Calibration field
- 333+ indep UVIS exposures
- 8+ year baseline
- >10 visits, orients
- Wide dithers
- 15 filters: UV to IR
- New catalog to come:

- Bright + faint stars
- More precision -vs- More stars
- Will again make completely public

Validating the PMs

- Motions in AvdM10
- Errors from half-samples

> - e1a to e2a
> - e 1 b to e2b

- New test... 3 epochs
- Completely independent

Excellent agreement for all 50,000+ stars!

ω Centauri

Huge IMBH, or maybe none at all?

- Noyola et al. 08 found:
(1) Cluster center from an ACS image inside core
(2) Cusp in Surface-Brightness Profile (SBP)
(3) RV dispersion increase in central IFU ($5^{\prime \prime} \times 5^{\prime \prime}$)

$\sim 40,000 \mathrm{M}_{\odot}$ IMBH

GO-9442 PI-Cool

ω Centauri

Huge IMBH, or maybe none at all?

- Noyola et al. 08 found: $\rightarrow \sim 40,000 \mathrm{M}$ 。 IMBH
- AvdM10 \& vdMA10 found:
(1) Center: 1M-star catalog

$\rightarrow 4$ ways agree to $2^{\prime \prime} ; 10$ ApJ pages... + Goldsbury et al 2010
\rightarrow center off by $12^{\prime \prime}$ from NGB08/historic center ($<10 \%$ of R_{c})
(2) Number Density Profile: NDP not biased by giant PSF haloes
\rightarrow No cusp needed
\rightarrow Fundamental limitation
(3) PMs for 50,000 stars in core
\rightarrow No fast-moving stars, at either center (Drukier \& Bailyn 2003)
\rightarrow No dispersion increase ALETAN ${ }^{2}=30^{\prime \prime}$
\rightarrow Also found (1) Stight radial anisotropy (2) G-H moments

	GO-10775
2006	

$\mathbf{1 0}^{\prime} \times \mathbf{1 0}^{\prime} \times 2 \times 1$

ω Centauri

Huge IMBH, or maybe none at all?

- Noyola et al. 08 found: $\sim 40,000 \mathrm{M}_{\odot}$ IMBH
- AvdM10 \& vdMA10 found: < 12,000 M。IMBH
- Noyola et al. 11 found:
- New center; more symmetric RV distn

$\sim 40,000 \mathrm{M}_{\odot}$ IMBH
NEW N11
NGB08
$\sigma_{\mathrm{RV}}(\mathrm{km} / \mathrm{s})$
AvdM

ω Centauri

Huge IMBH, or maybe none at all?

- Noyola et al. 08 found: $\sim 40,000 \mathrm{M}_{\odot}$ IMBH
- AvdM10 \& vdMA10 found: $<12,000$ M $_{\odot}$ IMBH
- Noyola et al. 11 found: $\sim 40,000$ M $_{\odot}$ IMBH

Minor Points of Disagreement: Models

RV Effort

Center Σ Profile
surface density

Isotropy

Spatial/Kinematic offset

Assume cusp

Assume isotropic

PM Effort

Spatial/PM-Kinematic coincide to 2"
\rightarrow Only centers with errorbars
NDP consistent with being flat
\rightarrow Cusps in these models lead to bigger IMBH
We measured 5\% radial (intrinsic)
\rightarrow Ignoring anisotropy can lead to bigger IMBH

Difference ~ 15,000 M_{\odot}

ω Centauri

Huge IMBH, or maybe none at all?

Major Point of Disagreement: Data

- $\sigma_{\mathrm{V}}(\mathrm{R})$ Profile
- Fast-Moving Stars
$\sigma_{\mathrm{V}}(\mathrm{km} / \mathrm{s})$

(relative to new NG+11 Kinematic Cen)

ω Centauri

Huge IMBH, or maybe none at all?
Major Point of Disagreement: Data

- $\sigma_{\mathrm{V}}(\mathrm{R})$ Profile
- Fast-Moving Stars


```
Model of DF
Eddington's equation: \(f(E)\) with isotropy
with cusp
trial IMBHs
```


Model Predictions:

IMBH	$\mathbf{N}_{\text {PRED }} \mathbf{P (0)}$		$\underline{\sigma}_{\text {PRED }}$
$40,000 \mathrm{M}_{\text {¢ }}$	10.0		0.000035
23.1 km/s			
20,000 M ${ }_{\text {¢ }}$	4.1	0.012	19.5 km/
$5,000 \mathrm{M}_{\odot}$	0.9	0.392	16.6 km

ω Centauri

Huge IMBH, or maybe none at all?

How to Resolve the Controversy?

- Ideal: compare star-by-star
\rightarrow Good also for 3-D motions; Schwartzchild modeling
\rightarrow Currently the star-by-star RVs only for giants/outside
- Validate the motions
\rightarrow Multiple Independent measurements
- Validate the models:
\rightarrow Centers (does the spatial center matter?)
\rightarrow Spatial Profile
\rightarrow Isotropy
\rightarrow We have made public all our catalogs.
- N-Body contributions
\rightarrow non-equilibrium issues?
Dark remnants?
Wandering IMBH?
Mass Segregation (Pasquato et al. 2009)
- Other data:
\rightarrow X-ray: nothing (Henke, personal comm.)
\rightarrow Radio: Lu+ 2011
- Tantalizing 2.5- σ radio detection at centers of both ω Cen \& 47 Tuc
- Upper limit of 1000-5000 M_{\odot}

Preliminary Results Other Clusters

Cluster	Dist (kpc)	σ_{RV} $(\mathrm{km} / \mathrm{s})$	σ_{PM} $(\mathrm{mas} / \mathrm{yr})$	Mass $\left(\mathrm{M}_{\odot}\right)$
NGC6752	4	4.9	0.25	2×10^{5}
NGC6341	8.3	6.0	0.15	3×10^{5}
NGC2808	9.6	13.4	0.27	9×10^{5}

Data Overview

- Profile/center: WFC: $3^{\prime} \times 3^{\prime}$
- $20064 \times$ F606W, 4×F814W (Ata's Treasury data)
- Core motions: HRC/UVIS subarray: 30 " $\times 30^{\prime \prime}$
- $200512 \times$ F435W HRC images of core
- $200712 \times$ F435W HRC images of core
- $20108 \times F 438$ W WFC3/UVIS images of core
- Outer motions: WFC/UVIS data: $3^{\prime} \times 3^{\prime}$
- 2004-2011 wide-field observations in archive/GO

NGC 6752
Treasury

Center and NDP

- Contours
- Goldsbury et al. 2010
- HRC field too small
- Use WFC Treasury data

THE FULL DATA SET

 For each star:
-RAW:

- $\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{~m}_{1}$
- x_{2}, y_{2}, m_{2}
- $\mathrm{X}_{3}, \mathrm{y}_{3}, \mathrm{~m}_{3}$,
- m_{V}
- DISTILLED:
- $x_{\text {BAR }}, y_{\text {bar }}$ (pixels)
- $\mathrm{D}_{\text {CEN }}$ (arcsec)
- $\mu_{\mathrm{X}}, \mu_{\mathrm{Y}}$ (mas/yr)
- σ_{μ} (mas/yr)
- χ (e_{2} agreement)
- $m_{B}-m_{V}, m_{B}$

NGC6752 PMs

2-D to 3-D ...

Which stars can be physically closest to the center?
\rightarrow could be any star within 2"

Need to carefully evaluate quality and likelihoods for small-number statistics of fast stars...

NGC6341

Coming soon..

- ω Cen
- More stars, deeper \& brighter!
- Other clusters
- IMBH studies:

- NGC 362, NGC6624, NGC6681 NGC7078, NGC7099 HRC + WFPC2 + ...; all data in hand for... (PI-Chandar) (collaborators: Ivan King, Roeland van der Marel, Holland Ford, Laura Ferrarese)
- NGC6266 WFC + UVIS... PI-Chaname
- M54... Cycle 18 in September 2011 ; Pl-vdMarel
- Modeling improvements
- Include mass in Jeans models

NGC 6266

A very good time for cluster studies!!

GO-11677 PI-Richer

47Tuc Outer Calibn Field

ARCHIVE 2002-2007

GO DATA 2010

121 orbits

