HST Proper Motions in the Cores of Globular Clusters

Jay Anderson (STScI) Roeland van der Marel (STScI) Rupali Chandar (UToledo) Holland Ford (JHU)

Workshop on the Dynamics of Low-Mass Stellar Systems Santigo, Chile April 6, 2011

Clipper Adventurer

Penguins on Glacier

Mountain Reflections

Blue Icebergs

Civilization!

Organization of Talk

- PMs with HST
- Update on ω Centauri
- Work in progress
 - -NGC 6752, NGC6341, NGC2808
- Future work

PMs with HST

All astrometry is differential

- N can be from 50 to 200,000
- PMs can be absolute, though!

Advantage: stability, strehl

- GB: Seeing, chromatic, isoplanatic patch
- HST: Only breathing

Complexities

- Distortion (~400 pixels!)
- Undersampling:
 - Almost all cameras
 - Good PSF models, measuring software
- CCD Irregularities: WFPC2, ACS, WFC3...
- CTE... (a correction! See Anderson & Bedin 2010)
- Breathing: ~ 0.01 pixel

PMs in ω Cen

Motions in AvdM10

- 4-year baseline
- Catalog of 50,000 stars in core
 - No bright/faint (limited by 2006-epoch)
 - 100 good within 3.5"

More observations!

- WFC3 Calibration field
 - 333+ indep UVIS exposures
 - 8+ year baseline
 - >10 visits, orients
 - Wide dithers
 - 15 filters: UV to IR

New catalog to come:

- Bright + faint stars
- More precision -vs- More stars
- Will again make completely public

Validating the PMs

- Motions in AvdM10
 - Errors from half-samples
 - e1a to e2a
 - e1b to e2b
- New test... 3 epochs
 - Completely independent

Huge IMBH, or maybe none at all?

• Noyola et al. 08 found:

- (1) Cluster center from an ACS image inside core
- (2) Cusp in Surface-Brightness Profile (SBP)
- (3) RV dispersion increase in central IFU (5"×5")

ω Centauri

Huge IMBH, or maybe none at all?

- Noyola et al. 08 found: ~40,000 M_☉ IMBH
- AvdM10 & vdMA10 found: < 12,000 M_{\odot} IMBH
- Noyola et al. 11 found:
 - New center; more symmetric RV distn

ω Centauri

Huge IMBH, or maybe none at all?

- Noyola et al. 08 found: ~40,000 M_o IMBH
- AvdM10 & vdMA10 found: <<u>12,000 M₀ IMBH</u>
- Noyola et al. 11 found: ~40,000 M_☉ IMBH

Minor Points of Disagreement: Models

RV Effort

PM Effort

Spatial/Kinematic offset

SURFACE DENSITY

Center

Assume cusp

Isotropy

Assume isotropic

Spatial/PM-Kinematic coincide to 2"

 \rightarrow Only centers with errorbars

NDP consistent with being flat

 \rightarrow Cusps in these models lead to bigger IMBH

We measured 5% radial (intrinsic)

→ Ignoring anisotropy can lead to bigger IMBH

Difference ~ 15,000 M_{\odot}

Huge IMBH, or maybe none at all?

Major Point of Disagreement: Data

- $\sigma_v(R)$ Profile
- Fast-Moving Stars

 $\sigma_{\rm V}$ (km/s)

Huge IMBH, or maybe none at all?

Major Point of Disagreement: Data

• σ_v(R) Profile

• Fast-Moving Stars

Model of DF Eddington's equation: f(E) with isotropy with cusp trial IMBHs

109 Stars within 3"

Model Predictions:

Huge IMBH, or maybe none at all?

How to Resolve the Controversy?

Ideal: compare star-by-star

- → Good also for 3-D motions; Schwartzchild modeling
- → Currently the star-by-star RVs only for giants/outside

Validate the motions

→ Multiple Independent measurements

• Validate the models:

- → Centers (does the spatial center matter?)
- → Spatial Profile
- → Isotropy

→ We have made public all our catalogs.

N-Body contributions

→ non-equilibrium issues?
Dark remnants?
Wandering IMBH?
Mass Segregation (Pasquato et al. 2009)

Other data:

- \rightarrow X-ray: nothing (Henke, personal comm.)
- → Radio: Lu+ 2011
 - Tantalizing 2.5-σ radio detection at centers of both ω Cen & 47 Tuc
 - \bullet Upper limit of 1000 5000 M_{\odot}

Preliminary Results Other Clusters

Cluster	Dist (kpc)	σ _{RV} (km/s)	σ _{PM} (mas/yr)	Mass (M _☉)
NGC6752	4	4.9	0.25	2×10 ⁵
NGC6341	8.3	6.0	0.15	3×10 ⁵
NGC2808	9.6	13.4	0.27	9×10 ⁵

Data Overview

- Profile/center: WFC: 3'×3'
 - 2006 4×F606W, 4×F814W (Ata's Treasury data)
- Core motions: HRC/UVIS subarray: 30"×30"
 - 2005 12×F435W HRC images of core
 - 2007 12×F435W HRC images of core

OPTIMIZED FOR ASTROMETRY!

- 2010 8×F438W WFC3/UVIS images of core
- Outer motions: WFC/UVIS data: 3'×3'
 - 2004-2011 wide-field observations in archive/GO

Center and NDP

- Contours
 - Goldsbury et al. 2010
 - HRC field too small
 - Use WFC Treasury data

NGC 6752 STARS

2-D to 3-D ...

Which stars can be physically closest to the center? → could be any star within 2″

Need to carefully evaluate quality and likelihoods for small-number statistics of fast stars...

Coming soon.

- ω Cen
 - More stars, deeper & brighter!

- Other clusters
 - IMBH studies:
 - NGC 362, NGC6624, NGC6681 NGC7078, NGC7099

HRC + WFPC2 + ...; all data in hand for... (PI-Chandar) (collaborators: Ivan King, Roeland van der Marel, Holland Ford, Laura Ferrarese)

- NGC6266 WFC + UVIS... PI-Chaname
- M54... Cycle 18 in September 2011 ; PI-vdMarel

Modeling improvements

Include mass in Jeans models

A very good time for cluster studies!!

Ground-based \rightarrow ACS \rightarrow WFC3/UVIS \rightarrow PMs!

