Too Big To Fail? The puzzling darkness of massive DM subhalos

James Bullock

Collaborators

Mike Boylan-Kolchin (UC Irvine)

Boylan-Kolchin, JSB, Kaplinghat (2011, arXiv:1103.0007)

Erik Tollerud (UC Irvine)

Joseph Wolf (UC Irvine)

Greg Martinez (UC Irvine)

Missing Satellites Problem (1999)

NTER FOR COSMOLOGY

Klypin et al. 1999 Moore et al. 1999

Where would you put the classical MW dwarfs?

Where would you put the classical MW dwarfs?

Where would you put the classical MW dwarfs?

Natural Solution?

Only the big ones have enough stars to see?

Abundance Matching: (sub)halo mass \Leftrightarrow galaxy L or M*

Kravtsov et al. 2004; Conroy et al. 2006, Guo et al. 2010; Behroozi et al. 2010

Kravtsov et al. 2004; Conroy et al. 2006, Guo et al. 2010; Behroozi et al. 2010

compilation by Conroy & Wechsler 08

Abundance Matching: (sub)halo mass \Leftrightarrow galaxy L or M*

Kravtsov et al. 2004; Conroy et al. 2006, Guo et al. 2010; Behroozi et al. 2010

Galaxy luminosities matched with (sub)halo's peak V_{max}

Galaxy luminosities matched with (sub)halo's peak Vmax

Galaxy luminosities matched with (sub)halo's peak Vmax

Simple mapping does well matching galaxy clustering

Abundance Matching for Satellite Galaxies?

Tollerud et al. 2011

Abundance Matching for Satellite Galaxies?

Abundance Matching for Satellite Galaxies?

Milky Way 2004 Fornax: $L \sim 10^7 L_{sun}$ ~1000 рс Carina

TER FOR COSMOLOGY

II Dwarf Satellites UMaI Sextans Draco Milky Way Sag LMC SMC Sculptor Fornax Bullock/Geha 100,000 light years

J. Bullock, UC Irvine

FER FOR COSMOLOGY

There ARE missing satellites

Koposov et al. 2007, Walsh et al. 2009

Probably ~100's more faint dwarfs to be discovered

NTER FOR COSMOLOGY

See also: Koposov et al. 2007, Walsh et al. 2009, JSB et al. 2010

Probably ~100's more faint dwarfs to be discovered

BootesI/II

Coma 👀 Wi

Ursa Minor

Draco

TER FOR COSMOLOGY

SMC

N>26

Carina

Sextans

See also: Koposov et al. 2007, Walsh et al. 2009, JSB et al. 2010

Stadel et al. 2009

Does this picture actually work?

Compare Masses of Bright L>10⁵ L_{sun} MW satellites to Masses of LCDM subhalos

Dynamical masses at $r_{1/2}$ known to ~20% for bright dwarfs

J. Bullock, UC Irvine

TER FOR COSMOLOGY

Bright Dwarfs vs. Massive Subhalos

- Dynamical mass at $r_{1/2}$ constrained to $\leq 20\%$ by observations
 - ▶ Wolf et al. 10; ← Walker et al. 09; Koch et al. 07; Munoz et al. 05;
- N-body simulations now resolve r_{1/2} (~300 pc)
 - Springel et al. 2008, Diemand et al. 2008
- \rightarrow Directly compare observed satellites to simulated subhalos at $r_{1/2}$
 - if mass agrees: the subhalo may be able to host the satellite;
 - if mass disagrees: no way for the subhalo to host the satellite.

Example of kinematic constraint: Draco

assume NFW mass profiles for subhalos (verified in simulations)

assume NFW mass profiles for subhalos (verified in simulations)

assume NFW mass profiles for subhalos (verified in simulations)

assume NFW mass profiles for subhalos (verified in simulations)

Kinematic Constraints for all L>10⁵L_{sun} MW dSphs

Kinematic Constraints for all L>10⁵L_{sun} dSphs

Boylan-Kolchin et al. 2011

How Many Massive Failures?

Boylan-Kolchin et al. 2011

How Many Massive Failures?

All 7 hosts have:

at least 6 dark subhalos with V_{infall}>30 km/s at least 4 dark subhalos with V_{infall}>40 km/s

Note: Magellanic Cloud analogs already removed from this sample (Remove those with Vin>60 and Vnow>40)

Boylan-Kolchin et al. 2011

Wolf et al. 2011

c.f. Strigari et al. 2008

Wolf et al. 2011

c.f. Strigari et al. 2008

Stochastic Galaxy formation for V < 50km/s?

Boylan-Kolchin et al. 2011

Wolf et al. 2011

Wolf et al. 2011

GENTER FOR COEMOLOGY

Wolf et al. 2011

10³

Given large mass uncertainties, ultrafaint dwarfs could sit within most MASSIVE subhalos.

 $\begin{pmatrix} 000 \\ 000 \\ 10^2 \\ 10^2 \\ 10^1 \\ 10^0 \\ 10^6 \\ 10^6 \\ M_{300} [M_{\odot}] \end{pmatrix}$

Crazy?

Connection with cusp/core problem in LCDM?

If massive subhalos had low-density cores, they could still host bright dwarfs.

- modify dark matter (self-interactions?)
- baryonic effects make cores?

cusps would be easily detected if present

See poster by Megan Jackson - NGC 1569

LCDM + baryonic effects create cores?

Governato et al. 2010

Conclusions & Discussion

- **Option I**: massive dark subhalos **do** exist in the MW as predicted
 - Galaxy formation is stochastic for V < 50 km/s
 - Already found? Some ultra-faint galaxies could lie in these subhalos

Conclusions & Discussion

- **Option I**: massive dark subhalos **do** exist in the MW as predicted
 - ▶ Galaxy formation is stochastic for V < 50 km/s
 - Already found? Some ultra-faint galaxies could lie in these subhalos
- **Option 2:** No massive dark subhalos in MW (ACDM interpretation)
 - the subhalo content of the Milky Way is anomalous compared to expectations
 - baryonic feedback strongly alters structure of subhalos on ~300-1000 pc scales
 - MW disk has important effects on subhalo populations

Conclusions & Discussion

- **Option I**: massive dark subhalos **do** exist in the MW as predicted
 - ▶ Galaxy formation is stochastic for V < 50 km/s
 - Already found? Some ultra-faint galaxies could lie in these subhalos
- **Option 2:** No massive dark subhalos in MW (ACDM interpretation)
 - the subhalo content of the Milky Way is anomalous compared to expectations
 - baryonic feedback strongly alters structure of subhalos on ~300-1000 pc scales
 - MW disk has important effects on subhalo populations
- **Option 3:** No massive dark subhalos in MW (modifications to Λ CDM)
 - dark matter is somewhat warm, characteristic suppression scale of ~40-50 km/s
 - dark matter has self-interactions
 - something else??

End

Bright and Faint Dwarfs Together

Strigari et al. 2008

Strigari et al. 2008

Tollerud et al. 2011

~0.1 L* satellites within ~L* galaxy halos

Abazajian et al. 2009

Boylan-Kolchin et al. 2010

Volume-Lim. SDSS for ~0.1 L* satellites (z<.034) Mill II simulation "observed" like SDSS sample Around isolated L* galaxies (not in clusters)

40% of ~L* galaxies have a ~0.1L* satellite within 250 kpc

Kinematic Sample: Segue

TER FOR COSMOLOGY

J. Bullock, UC Irvine

NTER FOR COSMOLOGY

J. Bullock, UC Irvine

CENTER FOR COSMOLOGY

Stealth Galaxies? Surface Brightness & Mass Bias

NTER FOR COSMOLOGY

"Missing Satellites Problem" circa 2010

Theory: N~10¹⁶

Observation: N~25

(down to ~Earth mass subhalos)

(maybe ~500 will be found)

Tollerud, Boylan-Kolchin et al. 2011

Spectroscopic ~0.1 L* satellites within ~L* galaxy halos

Volume-Lim. SDSS for ~0.1 L* satellites (z<.034) Around isolated L* galaxies (not in clusters)

Mill II simulation "observed" like SDSS sample

Abundance matching works at V_{infall}~100 km/s

Bright satellites of isolated L* galaxies are RED

The LMC is unusually blue for a satellite

