The Observed Mass Function of Young Star Clusters

Søren S. Larsen

Astronomical Institute, Utrecht University

What is the ICMF?

Initial Cluster Mass Function (ICMF) =
Distribution of cluster masses "at birth".

What is the ICMF?

Initial Cluster Mass Function (ICMF) =
Distribution of cluster masses "at birth".

Not very practical:What does "at birth" mean?

What is the ICMF?

Better:
ICMF = Mean birth rate vs. cluster mass:

$$
\psi(M) \hat{=} \frac{d^{2} N}{d M d \tau}
$$

For large $M\left(>10^{5}-10^{6} M_{\odot}\right)$, birth rate is
typically << Myr^{-1}, even in large galaxies.

Observational difficulties

- High masses:
- Low birth rates \rightarrow rare, poor statistics
- Low masses:
- Clusters faint, short-lived
- Integrated properties subject to stochastic IMF sampling
- Masses are observationally expensive to measure (virial masses prohibitive for large samples)

Stochastic IMF sampling

Mean number of supergiants vs age

Stochastic IMF sampling becomes very important below $M \sim 10^{4} M_{\odot}$.
(Barbaro \& Bertelli 1977;
Girardi et al. I995;
Bruzual 2002;
Cerviño \& Luridiana 2004,2006; Maíz-Apellániz 2009;
Piskunov et al. 2009;
Fouesneau \& Lançon 2010; Popescu \& Hanson 2010; Silva-Villa \& Larsen 2011)

Luminosity vs. mass for stochastic IMF sampling

Luminosity vs. mass for stochastic IMF sampling

Luminosity vs. mass for stochastic IMF sampling

Colours of Galactic open clusters

Dots: observed colours
Blue curve: stochastically sampled models
Red curve: classical SSP model

Piskunov et al. 2009

Ages and masses: stochastic effects

Ages

Input

Masses

Bayesian approach

Classical SSP models

Stochastic effects

Stochastic effects

- Very important for $M \leq 10^{4} M_{\odot}$

Stochastic effects

- Very important for $M \leq 10^{4} M_{\odot}$
- Possible ways to mitigate effects on photometry:
- Use weights based on effect of stochasticity in different bands (Maíz-Apellaniz 2009)
- Reject clusters with poor fits (Fouesneau \& Lançon 2010)
- Generate full model grid of stochastic clusters and search for best fit (Popescu \& Hanson 2010; Fouesneau \& Lançon 2010)

Stochastic effects

- Very important for $M \leq 10^{4} M_{\odot}$
- Possible ways to mitigate effects on photometry:
- Use weights based on effect of stochasticity in different bands (Maíz-Apellaniz 2009)
- Reject clusters with poor fits (Fouesneau \& Lançon 2010)
- Generate full model grid of stochastic clusters and search for best fit (Popescu \& Hanson 2010; Fouesneau \& Lançon 2010)
- Also affect cluster detection via biased size measurements (Silva Villa \& Larsen 201 I)

NGC 4038/4039, The Antennae

The CMF of clusters in The Antennae

$$
\begin{aligned}
& \frac{d N}{d M} \propto M^{-2} \\
& \quad ; M>10^{4} M_{\odot}
\end{aligned}
$$

Zhang \& Fall 1999

The CMF of clusters in The Antennae

$$
\begin{aligned}
& \frac{d N}{d M} \propto M^{-2} \\
& \quad ; M>10^{4} M_{\odot}
\end{aligned}
$$

(note: most massive bins all somewhat below fit)

Zhang \& Fall 1999

Shape of the ICMF

*Cluster samples likely contaminated by complexes / associations

Shape of the ICMF

- Several studies: $\mathrm{dN} / \mathrm{dM} \sim \mathrm{M}^{-2}$, over some mass range:
- Milky Way open and embedded clusters
(Elmegreen \& Efremov 1997; Lada \& Lada 2003; Selman \& Melnick 2008); $\quad \log M / M_{\odot} \approx 3$
- Large Magellanic Cloud
(Hunter et al. 2003; de Grijs \& Anders 2006; Chandar et al. 2010);
- M5I (Bik et al. 2002; Chandar et al. 201 I);
$3 \leq \log M / M_{\odot} \leqslant 5$
- Antennae (Zhang \& Fall 2005; Fall et al.2009):
$3 \leqslant \log M / M_{\odot} \leqslant 5$
- Several spirals + irr (Dowell et al. 2008)*: dN/dM ~ $M^{-1.8}$ for $4 \leqslant \log M / M_{\odot}$
- Starbursts: NGC 6745*/NGC 3310 (de Grijs et al. 2003): $5 \leqslant \log M / M_{\odot}$
*Cluster samples likely contaminated by complexes / associations

ICMF is universal: $\frac{d N}{d M} \propto M^{-2}$

ICMF is universal: $\frac{d N}{d M} \propto M^{-2}$

True or False?

Luminosity functions: slope vs. Mv

Figure 1. Sample of published indices of power law fit results to LFs of young star clusters as a function of the fit range. The results are taken from: Larsen (2002): six spirals and the LMC; Mora et al. (2007): NGC 45; Gieles et al. (2006b); Haas et al. (2008) and Hwang \& Lee (2008): M51; Whitmore et al. (1999): Antennae; Dolphin \& Kennicutt (2002): NGC 3627.

Gieles (2009)

Insight from LFs

- LFs invariably steeper than $\mathrm{dN} / \mathrm{dL} \sim \mathrm{L}^{-2}$
- Inconsistent with $\mathrm{dN} / \mathrm{dM} \sim \mathrm{M}^{-2}$ for all M
- Only way to get steep LFs is if ICMF is steeper, too and/or truncated
- MFs possibly truncated at several $10^{5} \mathrm{M}_{\odot}$ (Gieles et al. 2006a,b)

Two of the cluster-richest, nearby spirals

Clusters in the Antennae and NGC6946+M83

Clusters in the Antennae and NGC6946+M83

N5236-FI-I: I. $7 \times 10^{5} \mathrm{M}_{\odot}$

NI3I3-F3-I: $2.8 \times 10^{5} \mathrm{M}_{\odot}$

HST/ACS images - note resolution into individual stars!

CMFs in the Antennae and NGC6946+M83

 $d N / d M \sim M^{-2}$?

Larsen (2009)

CMFs in the Antennae and NGC6946+M83

$d N / d M \sim M^{-2}$?
Antennae - OK Spirals - NO ($\mathrm{P}=10^{-7}$)

Larsen (2009)

CMFs in the Antennae and NGC6946+M83

$d N / d M \sim M^{-2}$?
Antennae - OK Spirals - NO ($\mathrm{P}=10^{-7}$)

Best fits:

$$
\begin{aligned}
& \frac{d N}{d M} \propto M^{-2} \exp \left(-\frac{M}{M^{*}}\right) \\
& M^{*}=2 \times 10^{5} \mathrm{M}_{\odot} \text { (spirals) } \\
& \mathrm{M}^{*} \sim 2 \times 10^{6} \mathrm{M}_{\odot} \text { (Antennae; } \\
& \text { Jordán et al. 2007) }
\end{aligned}
$$

More MFs

Spirals:

Generally consistent with $M^{*}=2 \times 10^{5} M_{\odot}$ Schechter fct.

Antennae:

Cut-off at higher mass (>106 M_{\odot})

Portegies Zwart, McMillan, Gieles 2010,ARA\&A

LF of young clusters in M5I

$d N / d L \sim L^{-2} ?$ Poor fit

LF based on Schechter MF with $M^{*}=2 \times 10^{5} M_{\odot}$?

OK fit, if there is some disruption.

The Most Massive YMCs

Clusters with $\mathrm{M} \sim 10^{7}$ M_{\odot} in starbursts \rightarrow ICMF more top-heavy than in spiral discs

Arp 220 - most massive clusters $\sim 10^{7} \mathrm{M}_{\odot}$, $R_{\text {eff }} \sim 10$ pc (Wilson et al. 2006).

NGC $7252-\mathrm{W} 3: \mathrm{Mvir}_{\text {vir }}=(8 \pm 2) \times 10^{7} \mathrm{M}_{\odot}$,
$R_{\text {eff }} \sim 18 \mathrm{pc}$ (Maraston et al. 2004)

Small samples: hard to tell the difference

Large Magellanic Cloud:

Consistent with $\alpha=-2$ power-law? YES ($\mathrm{P}=0.56$)

Consistent with $M^{*}=2 \times 10^{5}$ M_{\odot} Schechter fct?
YES ($\mathrm{P}=0.94$)

M83 (WFC3 early release)

ICMF upper cut-off consistent with other constraints?

Upper ICMF limit \rightarrow Brighter Clusters Should be Younger

Gieles et al. (2006)

Brighter clusters are younger

Larsen (2009)

Size-of-sample effects

Brightest clusters: size-of-sample effects

Bastian (2008)

The $L_{\max }$ vs. SFR relation for Schechter MFs

Larsen (2010)

Filled circles: spirals
Triangles: starbursts/ mergers

N assumed to scale with SFR

Summary

Summary

- An M^{-2} power-law ICMF in spirals is contradicted by:
- Luminosity functions (too steep)
- Direct MF determinations
- $L_{\text {max }}$ vs. SFR (or N) relation ("size-of-sample effect")
- Mean $L_{\text {max }}$ vs. age trend (brighter clusters younger)

Summary

- An M^{-2} power-law ICMF in spirals is contradicted by:
- Luminosity functions (too steep)
- Direct MF determinations
- $\mathrm{L}_{\text {max }}$ vs. SFR (or N) relation ("size-of-sample effect")
- Mean $L_{\text {max }}$ vs. age trend (brighter clusters younger)
- But a Schechter fct with $M^{*} \sim 200,000 M_{\odot}$ fits well

Summary

- An M^{-2} power-law ICMF in spirals is contradicted by:
- Luminosity functions (too steep)
- Direct MF determinations
- $\mathrm{L}_{\text {max }}$ vs. SFR (or N) relation ("size-of-sample effect")
- Mean $L_{\text {max }}$ vs. age trend (brighter clusters younger)
- But a Schechter fct with $M^{*} \sim 200,000 M_{\odot}$ fits well
- The ICMF does not appear to be universal. Cut-off at higher masses in starburst/merger environments.

Summary

- An M^{-2} power-law ICMF in spirals is contradicted by:
- Luminosity functions (too steep)
- Direct MF determinations
- $\mathrm{L}_{\text {max }}$ vs. SFR (or N) relation ("size-of-sample effect")
- Mean $L_{\text {max }}$ vs. age trend (brighter clusters younger)
- But a Schechter fct with $M^{*} \sim 200,000 M_{\odot}$ fits well
- The ICMF does not appear to be universal. Cut-off at higher masses in starburst/merger environments.
- But: No cluster system has data from the lowest (<102 M_{\odot}) to the highest ($>10^{6} M_{\odot}$) masses

Peculiar MF in dwarfs?

(part of) spiral: NGC 6946

Dwarf:
NGC 1705

Peculiar MF in dwarfs?

