1-D imaging of the dynamical, inhomogeneous atmosphere of the red supergiant Betelgeuse in the 2.3 μm CO lines with VLTI / AMBER

Keiichi Ohnaka Max Planck Institute for Radio Astronomy

Introduction: Massive star evolution

Massive stars (> 8 M_{\odot} stars)

✓ Rare in number, short-lived

However, great impact on their surrounding environment...

- ✓ UV ionizing radiation sources
- ✓ Strong winds, SN explosion
 → Mechanical energy input
- ✓ Chemical enrichment of ISM

Evolution not yet well understood = Mass loss determines the star's final fate

Introduction: Betelgeuse's inhomogeneous atmosphere

Co-existence of hot plasma and cool gas →Hot plasma with a small filling factor embedded in cool gas (Harper & Brown 2001, 2006)

Strong IR molecular lines form in the outer atmosphere
 → High spectral & spatial resolution observations
 → Long-Baseline Spectro-Interferometry

AMBER observations of Betelgeuse in the 2.3 μm CO lines (2008)

Results

- 1) Fringes in the 2nd, 3rd, and 5th lobes Spectral resolution up to 12000
- 2) 48m baselines = 9.8 mas resolution
 → Highest resolution on Betelgeuse

AMBER observations of Betelgeuse in the 2.3 μm CO lines (2008)

Results

- 1) Fringes in the 2nd, 3rd, and 5th lobes Spectral resolution up to 12000
- 2) 48m baselines = 9.8 mas resolution
 → Highest resolution on Betelgeuse
- 3) Visibility & Closure phase asymmetric with respect to the line center
 - → The star looks different in the red & blue wings
- 4) Gas motions in a stellar photosphere spatially resolved for the first time other than the Sun Velocity amplitude = 10—15 km/s

Ohnaka et al. (2009)

AMBER observations of Betelgeuse (2009) 1-D aperture synthesis imaging in the CO lines

50

0

-50

-50

Linear array 16m-32m-48m

0

فأسلاس

50

2 x 0.5 night

Observations

- 🗸 CO lines, 2.28 2.31 μm
- ✓ Dense, linear *uv* coverage
 Spatial resolution = 9.8 mas
 → 1st to 5th visibility lobes
- 1-D projection image =
 "squashed" onto the baseline vector

Baseline on the sky

MiRA image reconstruction software (Thiébaut 2008)
 + self-calibration technique using differential phases

1-D imaging of Betelgeuse: First aperture synthesis imaging in CO lines

Movie available at http://www.mpifr.de/staff/kohnaka

Spectral resolution = 6000

Ohnaka et al. (2011)

1-D imaging of Betelgeuse: First aperture synthesis imaging in CO lines

Movie available at http://www.mpifr.de/staff/kohnaka

Spectral resolution = 6000

Ohnaka et al. (2011)

1-D imaging of Betelgeuse: Spectrum of the CO lines at each spatial position

1-D imaging of Betelgeuse: Spectrum of the CO lines at each spatial position

1-D imaging of Betelgeuse: Spectrum of the CO lines at each spatial position

Betelgeuse in the *K*-band continuum:

No or only marginal time variation between 2008 and 2009

Time variation is much smaller than the maximum variation predicted by 3-D convection simulation (Chiavassa et al. 2009). \rightarrow 3-D model predicts too pronounced inhomogeneities(?)

AMBER 1-D imaging of Betelgeuse in the CO lines

AMBER 1-D imaging of Betelgeuse in the CO lines

Modeling the inhomogeneous velocity field

0—5 km/s

Strong downdraft with 20—30 km/s

Modeling the inhomogeneous velocity field

 Drastic change in the velocity field between 2008 and 2009 2008: Both upwelling and downdrafting with 10—15 km/s 2009: Weak upwelling at 0—5 km/s & Strong downdrafts with 20—30 km/s

Origin of the inhomogeneous velocity field

✓ Convection

Extended component up to 1.3 stellar radii→ Can convection overshoot so high?

✓ Driven by MHD processes

MHD simulations for red giants show strong variation from +40 km/s (outward) to -40 km/s (inward) at a few stellar radii (Suzuki 2007)

 \rightarrow But no simulation yet for red supergiants

✓ Clumpy mass loss

Temporally variable, inhomogeneous velocity field → Clumpy mass loss(?)

Conclusion & Outlook

1-D imaging at high-spatial and high spectral resolution

- ✓ Betelgeuse appears different in the blue and red wings
- ✓ Stellar surface gas motions spatially resolved
- Long-term monitoring to follow the dynamics of the outer atmosphere
 E.g., Episodic, strong outward motion?

✓ 2-D imaging

Image reconstruction of the red supergiant Antares

Image reconstruction of the red supergiant Antares

Thank you for your attention!

Artist's impression of mass loss from Betelgeuse (L. Calçada) ESO Press Release, July 29, 2009