Determination of thermal properties of asteroids using IR interferometry

Thermal properties of asteroids

Thermal properties of asteroids : scientific interest					
	Thermal inertia	Presence (or absence), depth and thickness of regolith, and presence of exposed rocks on the surface of atmosphere–less bodies			
	(25143) Itokawa	(433) Eros	The Moon	(21) Lutetia	
	Γ = 750	Γ = 150	Γ = 50	Γ = 20	
	Release 051101-4 ISAS/JAXA Coarse regolith and boulders	Finer and thicker regolith	Mature and fine regolith	Very fine regolith	
				Garching, October 25 th 201	11
				5	

- . Correlation: size decreasing \leftrightarrow thermal inertia increasing
- . No correlation between thermal inertia and albedo

Thermal properties of asteroids : scientific interest

Presence (or absence), depth and thickness of regolith, and presence of Thermal inertia exposed rocks on the surface of atmosphere-less bodies (25143) Itokawa (21) Lutetia (433) Eros The Moon Γ = 750 Γ = 150 Γ = 20 $\Gamma = 50$ Release 051101-4 ISAS/JAXA Finer and thicker Mature and fine Coarse regolith and Very fine regolith boulders regolith regolith

Strenght of the Yarkovsky effect \rightarrow gradual orbital drifting due to asymmetric re-emission of solar irradiation \rightarrow source of uncertainty in the impact prediction for hazardous asteroids

Estimation of systematic errors affecting size and albedo measured using simple thermal models

Thermophysical modeling

Conclusion and perspectives

Thank you for your attention

Work in progress

October 2011 \rightarrow MIDI observation of two binary asteroids previously detected by transit \rightarrow Aim: direct measurement of the semi-major axis of the system

(1313) Berna

- . Secondary detected in 2004 by Roy et al.
- . Binary system period = 25 h
- . Expected N band flux ~ 0.7 Jy

\checkmark

. Fringes found but measured without tracking . Correlated flux very likely to be ≤ 0.2 Jy

Data reduction in progress

(939) Isberga

- . Secondary detected in 2006 by Molnar et al.
- . Binary system period = 27 h
- . Expected N band flux ~ 1 Jy

Garching, October 25th 2011