## Iva KAROVICOVA MPIA Heidelberg, Germany

M. WITTKOWSKI ESO Garching, Germany D. A. BOBOLTZ Naval Observatory, USA E. FOSSAT Observatoire de la Côte d'Azur, France K. OHNAKA MPIR Bonn, Germany M. SCHOLZ ZAH Heidelberg, Germany & University of Sydney, Australia

> "Ten years of VLTI" conference, ESO Garching 25 October 2011

#### <u>Outline</u>

- Motivation
- Modeling
  - Modeling Theory
  - Modeling Simulations
- Observations
  - Monitoring of photometry and visibility variations as a function of phase and cycle
  - Modeling results
- Comparison of MIDI Observations and Simulations for RR AQL, S ORI, GX MON, and R CNC
- Conclusions
- Outlook

#### **Motivation**

## -> to better understand the mass loss process

AGB stars create > 50% of the dust ~80% of all stars evolve through AGB

- Investigation:
  - pulsation mechanism
  - dust condensation sequence
- high angular resolution
- wavelengths
  - near-infrared
  - mid-infrared





#### **Motivation**

## -> to better understand the mass loss process

AGB stars create > 50% of the dust ~80% of all stars evolve through AGB

- Investigation:
  - pulsation mechanism
  - dust condensation sequence
- high angular resolution
- wavelengths
  - near-infrared
  - mid-infrared

• the best currently available modeling approach

4 oxygen-rich AGB stars RR AQL, S ORI, GX MON, R CNC



#### **Motivation**

**RR AQL - 13 epochs** 

**SORI - 14** 

GX MON - 12 R CNC - 2

## -> to better understand the mass loss process

AGB stars create > 50% of the dust ~80% of all stars evolve through AGB AGB stars evolve through AGB AGB stars evolve through AGB A oxygen-rich AGB stars RR AQL, S ORI, GX MON, R CNC

- Investigation:
  - pulsation mechanism
  - dust condensation sequence
- high angular resolution
- wavelengths
  - near-infrared
  - mid-infrared

• the best currently available modeling approach

#### **AGB Stars – Introduction**

## **Dust condensation sequence**?

multi-component mixture

## Silicate Condensates

• 9.7 and 18  $\mu m$ 

## • Aluminium Oxide Al<sub>2</sub>O<sub>3</sub>

- broad emission feature
- 11.5-11.8 µm or 13 µm
- The first solid that condensate in the outflow
- a seed nuclei

#### AGB Stars - Introduction

## **Dust condensation sequence**?

multi-component mixture

- Silicate Condensates
  - 9.7 and 18 µm



- · broad emission feature
- 11.5-11.8 µm or 13 µm
- The first solid that condensate in the outflow
- a seed nuclei



Lorenz-Martins & Pompeia, 2000

#### INTERFEROMETRIC OBSERVATIONS OF EVOLVED STARS AGB Stars – Introduction

**Dust condensation sequence** ?

multi-component mixture

- Silicate Condensates
  - 9.7 and 18 µm

- Aluminium Oxide Al<sub>2</sub>O<sub>3</sub>
  - broad emission feature
  - 11.5-11.8 µm or 13 µm
  - The first solid that condensate in the outflow
  - a seed nuclei



Lorenz-Martins & Pompeia, 2000

#### **Motivation**

## -> to better understand the mass loss process

AGB stars create > 50% of the dust ~80% of all stars evolve through AGB AGB stars RR AQL, S ORI, GX MON, R CNC

- Investigation:
  - pulsation mechanism
  - dust condensation sequence
- high angular resolution
- wavelengths
  - near-infrared
  - mid-infrared

• the best currently available modeling approach

RR AQL – silicate-rich dust shell S ORI -  $AI_2O_3$ GX MON - silicate+ $AI_2O_3$ R CNC -  $AI_2O_3$ 

#### **Motivation**





• the best currently available modeling approach

#### **Motivation**



• the best currently available modeling approach



#### **Motivation**

#### The MID-infrared Interferometer Instrument (MIDI) at the VLTI

- combines **two beams** in the pupil plane (Michelson recombiner)
- N-band 7 -13 µm
- ATs
- Uts
- HIGH SENS mode (high sensitivity)
- SCI PHOT mode (high precision)
- The instrument provides spectral resolution R = 30 (dispersive element PRISM) or R = 230 (GRISM)

- MIDI data reduction
  - EWS the Expert Work Station (by Walter Jaffe)
  - MIA MIDI Interactive Analysis (by Rainer Köhler)



credit: ESO

#### **Motivation**



• the best currently available modeling approach for oxygen-rich AGB stars

## Modeling of the MID-INFRARED interferometric data

- Uniform disk
- Gaussian distribution
- *ad-hoc* radiative transfer model Monte Carlo radiative transfer code mcsim\_mpi (Ohnaka et al.2006)
- dust-free dynamic model atmosphere series (Hofmann et al 1998, Bessell et al. 1996, Ireland et al. 2004a,b)

• <u>Best available modeling approach for oxygen-rich AGB stars</u> radiative transfer model - **Surrounding dust** dynamic model atmosphere - **Central star** 

## Modeling of the MID-INFRARED interferometric data

- Uniform disk
- Gaussian distribution
- *ad-hoc* radiative transfer model Monte Carlo radiative transfer code mcsim\_mpi (Ohnaka et al.2006)
- *dust-free dynamic model atmosphere series* (Hofmann et al 1998, Bessell et al. 1996, Ireland et al. 2004a,b)

 Best available modeling approach for oxygen-rich AGB stars radiative transfer model - Surrounding dust dynamic model atmosphere - Central star







### Simulations of the visibility and photometry variations in the mid-infrared

| Model | cycle+Ф | L/Lo | T <sub>eff</sub> (K) |
|-------|---------|------|----------------------|
| M16n  | 1+0.60  | 2460 | 2860                 |
| M18   | 1+0.75  | 4840 | 3310                 |
| M18n  | 1+0.84  | 4980 | 3020                 |
| M19n  | 1+0.90  | 5070 | 2900                 |
| M20   | 2+0.05  | 4550 | 2650                 |
| M21n  | 2+0.10  | 4120 | 2550                 |
| M22   | 2+0.25  | 2850 | 2330                 |
| M23n  | 2+0.30  | 2350 | 2230                 |
| M24n  | 2+0.40  | 1540 | 2160                 |
| M25n  | 2+0.50  | 2250 | 2770                 |

M series P = 332 days  $M/M\odot = 1.2$ 

### + 6 dust shell parameters

- Optical depth (at wavelength 0.55 µm)
  - $Al_2O_3$  for  $\lambda < 8 \ \mu m$  (Koike et al.1995), for  $\lambda > 8 \ \mu m$  (Begemann et al.1997)
  - silicates (Ossenkopf et al.1992)
- Inner boundary radii
- The power law index of the density distribution
- The continuum photospheric diameter
- Projected baseline length

## RESULTS

|                                                  | RR AQL<br>13 epochs             | S ORI<br>14 epochs                   | GX MON<br>12 epochs                             | R CNC<br>2 epochs                    |
|--------------------------------------------------|---------------------------------|--------------------------------------|-------------------------------------------------|--------------------------------------|
| Intra-cycle<br>cycle-to-cycle<br>vis variations  | <b>X</b><br>uncertainties 5-20% | <b>X</b><br>uncertainties 5-20%      | <b>X</b><br>uncertainties 5-20%                 |                                      |
| Intra-cycle<br>cycle-to-cycle<br>phot variations | <b>+</b><br>diff. 20-35% (1-2σ) | <b>?</b><br>uncertainties 40-50%     | +<br>diff. 50-55% (4-5σ)<br>diff. 25% (2-3σ)    |                                      |
| Phase coverage                                   | 0.45-0.85                       | 0.90-1.20                            | ?                                               | ~0.03                                |
| Dust shell                                       | silicate-rich                   | Al <sub>2</sub> O <sub>3</sub> -rich | Al <sub>2</sub> O <sub>3</sub> +silicate-rich   | Al <sub>2</sub> O <sub>3</sub> -rich |
| Optical depth                                    | 2.8+/-0.8                       | 1.5+/-0.5                            | 1.9+/-0.6 + 3.2+/-0.5                           | 1.4+/-0.2                            |
| Inner boundary<br>radii                          | 4-5 R <sub>phot</sub>           | 2-2.5 R <sub>phot</sub>              | 2-2.5 R <sub>phot</sub> + 4-5 R <sub>phot</sub> | 2-2.5 R <sub>phot</sub>              |
| $\Theta_{\text{phot (N)}}$                       | 7.6+/-0.6 mas                   | 9.7+/-1.0 mas                        | 8.7+/-1.3 mas                                   | 12.3+/-0.0 mas                       |
| Simulations<br>Optimal Bp                        | 20-30m                          | 45-80m                               |                                                 |                                      |
| Simulations<br>Differences vis                   | 5-20%                           | ~40%                                 |                                                 |                                      |
| Simulations<br>Differences phot                  | <25%                            | 20%                                  |                                                 |                                      |

#### MULTIEPOCH INFRARED INTERFEROMETRIC OBSERVATIONS OF EVOLVED STARS AT THE VLTI MIDI Observations of RR AQL Silicate-rich dust shell



22

## RESULTS

|                                                  | RR AQL<br>13 epochs             | S ORI<br>14 epochs                   | GX MON<br>12 epochs                             | R CNC<br>2 epochs                    |
|--------------------------------------------------|---------------------------------|--------------------------------------|-------------------------------------------------|--------------------------------------|
| Intra-cycle<br>cycle-to-cycle<br>vis variations  | <b>X</b><br>uncertainties 5-20% | <b>X</b><br>uncertainties 5-20%      | <b>X</b><br>uncertainties 5-20%                 |                                      |
| Intra-cycle<br>cycle-to-cycle<br>phot variations | <b>+</b><br>diff. 20-35% (1-2σ) | <b>?</b><br>uncertainties 40-50%     | +<br>diff. 50-55% (4-5σ)<br>diff. 25% (2-3σ)    |                                      |
| Phase coverage                                   | 0.45-0.85                       | 0.90-1.20                            | ?                                               | ~0.03                                |
| Dust shell                                       | silicate-rich                   | Al <sub>2</sub> O <sub>3</sub> -rich | Al <sub>2</sub> O <sub>3</sub> +silicate-rich   | Al <sub>2</sub> O <sub>3</sub> -rich |
| Optical depth                                    | 2.8+/-0.8                       | 1.5+/-0.5                            | 1.9+/-0.6 + 3.2+/-0.5                           | 1.4+/-0.2                            |
| Inner boundary<br>radii                          | 4-5 R <sub>phot</sub>           | 2-2.5 R <sub>phot</sub>              | 2-2.5 R <sub>phot</sub> + 4-5 R <sub>phot</sub> | 2-2.5 R <sub>phot</sub>              |
| $\Theta_{\text{phot (N)}}$                       | 7.6+/-0.6 mas                   | 9.7+/-1.0 mas                        | 8.7+/-1.3 mas                                   | 12.3+/-0.0 mas                       |
| Simulations<br>Optimal Bp                        | 20-30m                          | 45-80m                               |                                                 |                                      |
| Simulations<br>Differences vis                   | 5-20%                           | ~40%                                 |                                                 |                                      |
| Simulations<br>Differences phot                  | <25%                            | 20%                                  |                                                 |                                      |

## RESULTS

|                                                  | RR AQL<br>13 epochs             | S ORI<br>14 epochs                   | GX MON<br>12 epochs                             | R CNC<br>2 epochs                    |
|--------------------------------------------------|---------------------------------|--------------------------------------|-------------------------------------------------|--------------------------------------|
| Intra-cycle<br>cycle-to-cycle<br>vis variations  | <b>X</b><br>uncertainties 5-20% | <b>X</b><br>uncertainties 5-20%      | <b>X</b><br>uncertainties 5-20%                 |                                      |
| Intra-cycle<br>cycle-to-cycle<br>phot variations | <b>+</b><br>diff. 20-35% (1-2σ) | <b>?</b><br>uncertainties 40-50%     | +<br>diff. 50-55% (4-5σ)<br>diff. 25% (2-3σ)    |                                      |
| Phase coverage                                   | 0.45-0.85                       | 0.90-1.20                            | ?                                               | ~0.03                                |
| Dust shell                                       | silicate-rich                   | Al <sub>2</sub> O <sub>3</sub> -rich | Al <sub>2</sub> O <sub>3</sub> +silicate-rich   | Al <sub>2</sub> O <sub>3</sub> -rich |
| Optical depth                                    | 2.8+/-0.8                       | 1.5+/-0.5                            | 1.9+/-0.6 + 3.2+/-0.5                           | 1.4+/-0.2                            |
| Inner boundary<br>radii                          | 4-5 R <sub>phot</sub>           | 2-2.5 R <sub>phot</sub>              | 2-2.5 R <sub>phot</sub> + 4-5 R <sub>phot</sub> | 2-2.5 R <sub>phot</sub>              |
| $\Theta_{\text{phot (N)}}$                       | 7.6+/-0.6 mas                   | 9.7+/-1.0 mas                        | 8.7+/-1.3 mas                                   | 12.3+/-0.0 mas                       |
| Simulations<br>Optimal Bp                        | 20-30m                          | 45-80m                               |                                                 |                                      |
| Simulations<br>Differences vis                   | 5-20%                           | ~40%                                 |                                                 |                                      |
| Simulations<br>Differences phot                  | <25%                            | 20%                                  |                                                 |                                      |

## **Results – model fitting**

**GX MON**  $Al_2O_3$  + silicate dust shell

Epoch E



## RESULTS

|                                                  | RR AQL<br>13 epochs             | S ORI<br>14 epochs                   | GX MON<br>12 epochs                             | R CNC<br>2 epochs                    |
|--------------------------------------------------|---------------------------------|--------------------------------------|-------------------------------------------------|--------------------------------------|
| Intra-cycle<br>cycle-to-cycle<br>vis variations  | <b>X</b><br>uncertainties 5-20% | <b>X</b><br>uncertainties 5-20%      | <b>X</b><br>uncertainties 5-20%                 |                                      |
| Intra-cycle<br>cycle-to-cycle<br>phot variations | <b>+</b><br>diff. 20-35% (1-2σ) | <b>?</b><br>uncertainties 40-50%     | +<br>diff. 50-55% (4-5σ)<br>diff. 25% (2-3σ)    |                                      |
| Phase coverage                                   | 0.45-0.85                       | 0.90-1.20                            | ?                                               | ~0.03                                |
| Dust shell                                       | silicate-rich                   | Al <sub>2</sub> O <sub>3</sub> -rich | Al <sub>2</sub> O <sub>3</sub> +silicate-rich   | Al <sub>2</sub> O <sub>3</sub> -rich |
| Optical depth                                    | 2.8+/-0.8                       | 1.5+/-0.5                            | 1.9+/-0.6 + 3.2+/-0.5                           | 1.4+/-0.2                            |
| Inner boundary<br>radii                          | 4-5 R <sub>phot</sub>           | 2-2.5 R <sub>phot</sub>              | 2-2.5 R <sub>phot</sub> + 4-5 R <sub>phot</sub> | 2-2.5 R <sub>phot</sub>              |
| $\Theta_{\text{phot (N)}}$                       | 7.6+/-0.6 mas                   | 9.7+/-1.0 mas                        | 8.7+/-1.3 mas                                   | 12.3+/-0.0 mas                       |
| Simulations<br>Optimal Bp                        | 20-30m                          | 45-80m                               |                                                 |                                      |
| Simulations<br>Differences vis                   | 5-20%                           | ~40%                                 |                                                 |                                      |
| Simulations<br>Differences phot                  | <25%                            | 20%                                  |                                                 |                                      |

## RESULTS

|                                                  | RR AQL<br>13 epochs             | S ORI<br>14 epochs                   | GX MON<br>12 epochs                             | R CNC<br>2 epochs                    |
|--------------------------------------------------|---------------------------------|--------------------------------------|-------------------------------------------------|--------------------------------------|
| Intra-cycle<br>cycle-to-cycle<br>vis variations  | <b>X</b><br>uncertainties 5-20% | <b>X</b><br>uncertainties 5-20%      | <b>X</b><br>uncertainties 5-20%                 |                                      |
| Intra-cycle<br>cycle-to-cycle<br>phot variations | <b>+</b><br>diff. 20-35% (1-2σ) | <b>?</b><br>uncertainties 40-50%     | +<br>diff. 50-55% (4-5σ)<br>diff. 25% (2-3σ)    |                                      |
| Phase coverage                                   | 0.45-0.85                       | 0.90-1.20                            | ?                                               | ~0.03                                |
| Dust shell                                       | silicate-rich                   | Al <sub>2</sub> O <sub>3</sub> -rich | Al <sub>2</sub> O <sub>3</sub> +silicate-rich   | Al <sub>2</sub> O <sub>3</sub> -rich |
| Optical depth                                    | 2.8+/-0.8                       | 1.5+/-0.5                            | 1.9+/-0.6 + 3.2+/-0.5                           | 1.4+/-0.2                            |
| Inner boundary<br>radii                          | 4-5 R <sub>phot</sub>           | 2-2.5 R <sub>phot</sub>              | 2-2.5 R <sub>phot</sub> + 4-5 R <sub>phot</sub> | 2-2.5 R <sub>phot</sub>              |
| $\Theta_{\text{phot (N)}}$                       | 7.6+/-0.6 mas                   | 9.7+/-1.0 mas                        | 8.7+/-1.3 mas                                   | 12.3+/-0.0 mas                       |
| Simulations<br>Optimal Bp                        | 20-30m                          | 45-80m                               |                                                 |                                      |
| Simulations<br>Differences vis                   | 5-20%                           | ~40%                                 |                                                 |                                      |
| Simulations<br>Differences phot                  | <25%                            | 20%                                  |                                                 |                                      |

#### **Conclusions**

• Mass-loss rates adopted from the literature

## -> dust condensation sequence ?

| star   | dust shell                            | M⊙/year              |
|--------|---------------------------------------|----------------------|
| R CNC  | Al <sub>2</sub> O <sub>3</sub> grains | 0.2 10 <sup>-7</sup> |
| S ORI  | Al <sub>2</sub> O <sub>3</sub> grains | 2.2 10 <sup>-7</sup> |
| GX MON | $Al_2O_3$ + silicate grains           | 5.4 10 <sup>-7</sup> |
| RR AQL | silicate grains                       | 9.1 10 <sup>-7</sup> |

- low mass-loss rates Al<sub>2</sub>O<sub>3</sub> grains
- high mass-loss rate silicates

+ Little-Marenin & Little (1990) and Blommaert et al. (2006)

**X** Sloan & Price (1998)

#### **Conclusions**

• Mass-loss rates adopted from the literature

## -> dust condensation sequence ?

| star   | dust shell                            | M⊙/year              |
|--------|---------------------------------------|----------------------|
| R CNC  | Al <sub>2</sub> O <sub>3</sub> grains | 0.2 10 <sup>-7</sup> |
| S ORI  | Al <sub>2</sub> O <sub>3</sub> grains | 2.2 10 <sup>-7</sup> |
| GX MON | $Al_2O_3$ + silicate grains           | 5.4 10 <sup>-7</sup> |
| RR AQL | silicate grains                       | 9.1 10 <sup>-7</sup> |



- low mass-loss rates Al<sub>2</sub>O<sub>3</sub> grains
- high mass-loss rate silicates
  - + Little-Marenin & Little (1990) and Blommaert et al. (2006)



X Sloan & Price (1998)

#### **Conclusions**

• Mass-loss rates adopted from the literature

## -> dust condensation sequence ?

| star   | dust shell                            | M⊙/year              |
|--------|---------------------------------------|----------------------|
| R CNC  | Al <sub>2</sub> O <sub>3</sub> grains | 0.2 10 <sup>-7</sup> |
| S ORI  | Al <sub>2</sub> O <sub>3</sub> grains | 2.2 10 <sup>-7</sup> |
| GX MON | $Al_2O_3$ + silicate grains           | 5.4 10 <sup>-7</sup> |
| RR AQL | silicate grains                       | 9.1 10 <sup>-7</sup> |



- low mass-loss rates Al<sub>2</sub>O<sub>3</sub> grains
- high mass-loss rate silicates

+ Little-Marenin & Little (1990) and Blommaert et al. (2006)



X Sloan & Price (1998)

#### <u>Summary</u>

- Interferometric observations of oxygen-rich Mira variables over several pulsation cycles
  - many different Bp and P.A.
  - Investigations of the circumstellar dust shell and characteristics of the atmosphere
  - No evidence of intra-cycle and cycle-to-cycle visibility variations
  - intra-cycle and cycle-to-cycle photometry variations
- Modeling of the interferometric data
  - the best approach currently available
    -> the photometric and visibility spectra can be well described
  - Simulations confirmed observations
    predicted optimal Bp
  - Best fitting models for all epochs
    - The study represents the first comparison of data and used models

#### · Results consistent with

- Lorenz-Martins & Pompeia (2000) IRAS data
- Wittkowski et al. (2007) MIDI data
- Ohnaka et al. MIDI data
- Zhao-Geisler et al. (2011) MIDI data
- Little-Marenin & Little (1990) and Blommaert et al. (2006)

#### <u>Summary</u>

- Interferometric observations of oxygen-rich Mira variables over several pulsation cycles
  - many different Bp and P.A.
  - Investigations of the circumstellar dust shell and characteristics of the atmosphere
  - No evidence of intra-cycle and cycle-to-cycle visibility variations uncertainties 5-20% phase coverage
    intra-cycle and cycle-to-cycle photometry variations ----> VISIR
- Modeling of the interferometric data
  - the best approach currently available
    -> the photometric and visibility spectra can be well described
  - **Simulations** confirmed observations predicted optimal Bp
  - Best fitting models for all epochs
    - The study represents the first comparison of data and used models
- Results consistent with
  - Lorenz-Martins & Pompeia (2000) IRAS data
  - Wittkowski et al. (2007) MIDI data
  - Ohnaka et al. MIDI data
  - Zhao-Geisler et al. (2011) MIDI data
  - Little-Marenin & Little (1990) and Blommaert et al. (2006)

#### <u>Summary</u>

- Interferometric observations of oxygen-rich Mira variables over several pulsation cycles
  - many different Bp and P.A.
  - Investigations of the circumstellar dust shell and characteristics of the atmosphere
  - No evidence of intra-cycle and cycle-to-cycle visibility variations
  - intra-cycle and cycle-to-cycle photometry variations
- Modeling of the interferometric data
  - the best approach currently available -> the photometric and visibility spectra can be well described
  - Simulations confirmed observations predicted optimal Bp
  - Best fitting models for all epochs
    - The study represents *the first comparison of data and used models*
- Results consistent with
  - Lorenz-Martins & Pompeia (2000) IRAS data
  - Wittkowski et al. (2007) MIDI data
  - Ohnaka et al. MIDI data
  - Zhao-Geisler et al. (2011) MIDI data
  - Little-Marenin & Little (1990) and Blommaert et al. (2006)

#### **Summary**

- Interferometric observations of oxygen-rich Mira variables over several pulsation cycles
  - many different Bp and P.A.
  - Investigations of the circumstellar dust shell and characteristics of the atmosphere
  - No evidence of intra-cycle and cycle-to-cycle visibility variations
  - intra-cycle and cycle-to-cycle photometry variations
- Modeling of the interferometric data
  - the best approach currently available
    -> the photometric and visibility spectra can be well described
  - **Simulations** confirmed observations predicted optimal Bp
  - Best fitting models for all epochs
    - The study represents the first comparison of data and used models

### · Results consistent with

- Lorenz-Martins & Pompeia (2000) IRAS data dust shells
- Wittkowski et al. (2007) MIDI data dust shell, model parameters
- Ohnaka et al. MIDI data NO visibility variations
- Zhao-Geisler et al. (2011) MIDI data NO visibility variations
- Little-Marenin & Little (1990) and Blommaert et al. (2006) dust condensation sequence

## <u>Outlook</u>

- Further infrared interferometric observations using MIDI & AMBER at the VLTI
- Image reconstruction
- Further analysis of the RR Aql data (VLTI / AMBER)
- Radio interferometric observations at the VLBA
- Comparison with multi-epoch observations of carbon-rich stars
- Comparison with multi-epoch observations of red supergiants

- Future high resolution facilities
  - MATISSE