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                                INTERFEROMETRIC OBSERVATIONS OF EVOLVED STARS

                               Motivation

-> to better understand the mass loss process
AGB stars create > 50% of the dust

~80% of all stars evolve through AGB

● Investigation:

● pulsation mechanism

● dust condensation sequence

● high angular resolution

● wavelengths

● near-infrared

● mid-infrared

● the best currently available modeling
approach 

credit: ESO
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                                INTERFEROMETRIC OBSERVATIONS OF EVOLVED STARS 

                            AGB Stars – Introduction

Dust condensation sequence ?

multi-component mixture
             
                                                                   

● Silicate Condensates 
●   9.7 and 18 μm
 

● Aluminium Oxide Al
2
O

3
 

● broad emission feature 
● 11.5-11.8 μm or 13 μm
● The first solid that condensate in the outflow
● a seed nuclei
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4 oxygen-rich AGB stars
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    MIDI
    mid-infrared

● dust formation zone
● inner circumstellar dust shell
● chemical composition

    MIDI
    mid-infrared

● dust formation zone
● inner circumstellar dust shell
● chemical composition

credit: ESO

credit: U.S. Navy
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                                 INTERFEROMETRIC OBSERVATIONS OF EVOLVED STARS

                                   The MID-infrared Interferometer Instrument (MIDI) at the VLTI

● combines two beams 
in the pupil plane (Michelson recombiner) 

● N-band 7 -13 μm

● ATs
● Uts

● HIGH SENS mode (high sensitivity)
● SCI PHOT mode (high precision)

● The instrument provides spectral resolution 
R = 30 (dispersive element PRISM) or 
R = 230 (GRISM)

● MIDI data reduction

● EWS the Expert Work Station (by Walter Jaffe)
● MIA MIDI Interactive Analysis (by Rainer Köhler)

credit: ESO
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● Investigation:

● pulsation mechanism

● dust condensation sequence

● high angular resolution

● wavelengths

● near-infrared

● mid-infrared
(atmospheric windows, emitting star 

     and dust, +silicate feature)

● the best currently available modeling
approach for oxygen-rich AGB stars

MIDI

credit: ESO
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                          Modeling of the MID-INFRARED interferometric data

● Uniform disk

● Gaussian distribution

                         
●  ad-hoc radiative transfer model - Monte Carlo radiative transfer code mcsim_mpi 

(Ohnaka et al.2006)

● dust-free dynamic model atmosphere series
(Hofmann et al 1998, Bessell et al. 1996, Ireland et al. 2004a,b) 

● Best available modeling approach for oxygen-rich AGB stars 
radiative transfer model - Surrounding dust
dynamic model atmosphere - Central star
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                           Modeling of the visibility and photometry variations in the mid-infrared 

? expected variations with phase

? optimal Bp

? optical depth

? dust formation

3 groups of simulations of atmosphere composed of : 
(Lorenz-Martins & Pompeia 2000)

I. - silicate-rich dust shell (RR AQL)

II. - Al
2
O

3 
-rich dust shell (S ORI)

III. - Al
2
O

3 
+ silicate-rich dust shell (GX MON)

MULTIEPOCH INFRARED INTERFEROMETRIC OBSERVATIONS OF EVOLVED STARS AT THE VLTI
Modeling

Model simulations performed in order to investigate the visibility and photometry variations theoretically 
expected in the 8-13 μm wavelength range. 

3 groups of simulations of atmosphere composed of :
RR AQL (Al

2
O

3
)

S ORI  (Al
2
O

3
)

GX MON

Models:  M16n (0.60), M18 (0.75), M18n (0.84), M19n (0.90), M20 (0.05), M21 (0.10), M22 (0.25),
M23n (0.30), M24n (0.40), M25n (0.50) 

+ 6 dust shell parameters

Dust species: Al
2
O

3 
 for λ < 8 μm (Koike et al.1995), for λ > 8 μm (Begemann et al.1997),

and silicates (Ossenkopf et al.1992)

Optical depth
Inner boundary radii
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Simulations of the visibility and photometry variations in the mid-infrared

 

+ 6 dust shell parameters
● Optical depth (at wavelength 0.55 μm)

● Al
2
O

3 
 for λ < 8 μm (Koike et al.1995), for λ > 8 μm (Begemann et al.1997)

● silicates (Ossenkopf et al.1992)
● Inner boundary radii
● The power law index of the density distribution

● The continuum photospheric diameter
● Projected baseline length

Model cycle+Φ L/L⊙ T
eff

 (K)

M16n 1+0.60 2460 2860

M18 1+0.75 4840 3310

M18n 1+0.84 4980 3020

M19n 1+0.90 5070 2900

M20 2+0.05 4550 2650

M21n 2+0.10 4120 2550

M22 2+0.25 2850 2330

M23n 2+0.30 2350 2230

M24n 2+0.40 1540 2160

M25n 2+0.50 2250 2770

M series
P = 332 days
M/M⊙ = 1.2
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RESULTS
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MULTIEPOCH INFRARED INTERFEROMETRIC OBSERVATIONS OF EVOLVED STARS AT THE VLTI
MIDI Observations of RR AQL

Silicate-rich dust shell

Bp < 20m

20m < Bp < 35m

35m < Bp < 50m

Bp > 50m
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Results – model fitting

GX MON
Al

2
O

3
 + silicate dust shell

Epoch E
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Conclusions

● Mass-loss rates adopted from the literature 

-> dust condensation sequence ?

                                                                                                                                            

●  low mass-loss rates - Al
2
O

3
 grains 

●  high mass-loss rate – silicates

+ Little-Marenin & Little (1990) and Blommaert et al. (2006)

x Sloan & Price (1998)

star dust shell M⊙/year

R CNC Al
2
O

3
 grains 0.2 10-7

S ORI Al
2
O

3
 grains 2.2 10-7

GX MON Al
2
O

3
 + silicate grains 5.4 10-7

RR AQL silicate grains 9.1 10-7
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Summary

● Interferometric observations of oxygen-rich Mira variables over several pulsation cycles

● many different Bp and P.A.
● Investigations of the circumstellar dust shell and characteristics of the atmosphere

● No evidence of intra-cycle and cycle-to-cycle visibility variations 

● intra-cycle and cycle-to-cycle photometry variations 

● Modeling of the interferometric data
●  the best approach currently available

-> the photometric and visibility spectra can be well described

● Simulations confirmed observations
                     predicted optimal Bp

● Best fitting models for all epochs
● The study represents the first comparison of data and used models

● Results consistent with
● Lorenz-Martins & Pompeia (2000) IRAS data 
● Wittkowski et al. (2007) MIDI data
● Ohnaka et al. MIDI data
● Zhao-Geisler et al. (2011) MIDI data
● Little-Marenin & Little (1990) and Blommaert et al. (2006)
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Summary

● Interferometric observations of oxygen-rich Mira variables over several pulsation cycles

● many different Bp and P.A.
● Investigations of the circumstellar dust shell and characteristics of the atmosphere

● No evidence of intra-cycle and cycle-to-cycle visibility variations 

● intra-cycle and cycle-to-cycle photometry variations 

● Modeling of the interferometric data
●  the best approach currently available

-> the photometric and visibility spectra can be well described

● Simulations confirmed observations
                     predicted optimal Bp

● Best fitting models for all epochs
● The study represents the first comparison of data and used models

● Results consistent with
● Lorenz-Martins & Pompeia (2000) IRAS data – dust shells 
● Wittkowski et al. (2007) MIDI data – dust shell, model parameters
● Ohnaka et al. MIDI data – NO visibility variations
● Zhao-Geisler et al. (2011) MIDI data – NO visibility variations
● Little-Marenin & Little (1990) and Blommaert et al. (2006) – dust condensation sequence
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Outlook

● Further infrared interferometric observations using MIDI & AMBER at the VLTI

● Image reconstruction

● Further analysis of the RR Aql data (VLTI / AMBER)

● Radio interferometric observations at the VLBA

● Comparison with multi-epoch observations of carbon-rich stars

● Comparison with multi-epoch observations of red supergiants

● Future high resolution facilities

● MATISSE
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