Mid-infrared interferometry of AGN cores

Leonard Burtscher

MPIA – Heidelberg

with Klaus Meisenheimer (MPIA), Konrad Tristram (Bonn), Walter Jaffe (Leiden) and the Large Programme team: Sebastian Hönig, Makoto Kishimoto, Jörg-Uwe Pott, Huub Rottgering, Marc Schartmann, Gerd Weigelt, Sebastian Wolf

26 Oct 11 Ten Years VLTI conference, ESO, Garching

most powerful nontransient phenomenon in the universe

- most powerful nontransient
- phenomenon in the universe
- role in galaxy evolution?

- most powerful nontransient
- phenomenon in the universe
- role in galaxy evolution?
- probes of the early universe

- most powerful nontransient
- phenomenon in the universe
- role in galaxy evolution?
- probes of the early universe
- ubiquitous (depending on definition)

Is the ,, torus ...

 a homogeneous, thick structure (scale height problem)

 a homogeneous, thick structure (scale height problem)

- a homogeneous, thick structure (scale height problem)
- a warped disk causing obscuration?

- a homogeneous, thick structure (scale height problem)
- a warped disk causing obscuration?
- a (geometrically thick) outflow, starting from a disk in the center?

- a homogeneous, thick structure (scale height problem)
- a warped disk causing obscuration?
- a (geometrically thick) outflow, starting from a disk in the center?
- a (geometrically thick) supernova-driven inflow, leading to a disk in the center?

Reference	main finding	source
-----------	--------------	--------

Reference	main finding	source
Jaffe+ 2004	There is a torus	NGC 1068

Reference	main finding	source
Jaffe+ 2004	There is a torus	NGC 1068
Meisenheimer+ 2007	Half of the mid-IR emission is nonthermal	Centaurus A

Reference	main finding	source
Jaffe+ 2004	There is a torus	NGC 1068
Meisenheimer+ 2007	Half of the mid-IR emission is nonthermal	Centaurus A
Tristram+ 2007 + PhD	Circinus galaxy also has a torus, clumpiness?	Circinus galaxy

Reference	main finding	source
Jaffe+ 2004	There is a torus	NGC 1068
Meisenheimer+ 2007	Half of the mid-IR emission is nonthermal	Centaurus A
Tristram+ 2007 + PhD	Circinus galaxy also has a torus, clumpiness?	Circinus galaxy
Kishimoto+ 2009	Tori seem to have common radial structure	3 sources

Reference	main finding	source
Jaffe+ 2004	There is a torus	NGC 1068
Meisenheimer+ 2007	Half of the mid-IR emission is nonthermal	Centaurus A
Tristram+ 2007 + PhD	Circinus galaxy also has a torus, clumpiness?	Circinus galaxy
Kishimoto+ 2009	Tori seem to have common radial structure	3 sources
Raban+ 2009	The inner disk part is misaligned	NGC 1068

Reference	main finding	source
Jaffe+ 2004	There is a torus	NGC 1068
Meisenheimer+ 2007	Half of the mid-IR emission is nonthermal	Centaurus A
Tristram+ 2007 + PhD	Circinus galaxy also has a torus, clumpiness?	Circinus galaxy
Kishimoto+ 2009	Tori seem to have common radial structure	3 sources
Raban+ 2009	The inner disk part is misaligned	NGC 1068
Tristram+ 2009	Many AGNs have parsec-scale dust; tori sizes go with luminosity as s ~ L ^{0.5}	10 sources

Reference	main finding	source
Jaffe+ 2004	There is a torus	NGC 1068
Meisenheimer+ 2007	Half of the mid-IR emission is nonthermal	Centaurus A
Tristram+ 2007 + PhD	Circinus galaxy also has a torus, clumpiness?	Circinus galaxy
Kishimoto+ 2009	Tori seem to have common radial structure	3 sources
Raban+ 2009	The inner disk part is misaligned	NGC 1068
Tristram+ 2009	Many AGNs have parsec-scale dust; tori sizes go with luminosity as s ~ L ^{0.5}	10 sources
Burtscher+ 2009	This Sy I torus is similar to the type 2 tori	NGC 4151

Reference	main finding	source
Jaffe+ 2004	There is a torus	NGC 1068
Meisenheimer+ 2007	Half of the mid-IR emission is nonthermal	Centaurus A
Tristram+ 2007 + PhD	Circinus galaxy also has a torus, clumpiness?	Circinus galaxy
Kishimoto+ 2009	Tori seem to have common radial structure	3 sources
Raban+ 2009	The inner disk part is misaligned	NGC 1068
Tristram+ 2009	Many AGNs have parsec-scale dust; tori sizes go with luminosity as s ~ L ^{0.5}	10 sources
Burtscher+ 2009	This Sy I torus is similar to the type 2 tori	NGC 4151
Burtscher+ 2010	The resolved mid-IR emission is not well fitted by an elongated disk	Centaurus A

Reference	main finding	source
Jaffe+ 2004	There is a torus	NGC 1068
Meisenheimer+ 2007	Half of the mid-IR emission is nonthermal	Centaurus A
Tristram+ 2007 + PhD	Circinus galaxy also has a torus, clumpiness?	Circinus galaxy
Kishimoto+ 2009	Tori seem to have common radial structure	3 sources
Raban+ 2009	The inner disk part is misaligned	NGC 1068
Tristram+ 2009	Many AGNs have parsec-scale dust; tori sizes go with luminosity as s ~ L ^{0.5}	10 sources
Burtscher+ 2009	This Sy I torus is similar to the type 2 tori	NGC 4151
Burtscher+ 2010	The resolved mid-IR emission is not well fitted by an elongated disk	Centaurus A
Burtscher 2011 (Ph.D. thesis, ADS)	Observing + data reduction method for weak targets; MIDI Large Programme	17 sources

Reference	main finding	source
Jaffe+ 2004	There is a torus	NGC 1068
Meisenheimer+ 2007	Half of the mid-IR emission is nonthermal	Centaurus A
Tristram+ 2007 + PhD	Circinus galaxy also has a torus, clumpiness?	Circinus galaxy
Kishimoto+ 2009	Tori seem to have common radial structure	3 sources
Raban+ 2009	The inner disk part is misaligned	NGC 1068
Tristram+ 2009	Many AGNs have parsec-scale dust; tori sizes go with luminosity as s ~ L ^{0.5}	10 sources
Burtscher+ 2009	This Sy I torus is similar to the type 2 tori	NGC 4151
Burtscher+ 2010	The resolved mid-IR emission is not well fitted by an elongated disk	Centaurus A
Burtscher 2011 (Ph.D. thesis, ADS)	Observing + data reduction method for weak targets; MIDI Large Programme	17 sources
Tristram+ 2011	The mid-IR emission comes from scales ~30x larger than the near-IR emission	10 sources

Reference	main finding	source
Jaffe+ 2004	There is a torus	NGC 1068
Meisenheimer+ 2007	Half of the mid-IR emission is nonthermal	Centaurus A
Tristram+ 2007 + PhD	Circinus galaxy also has a torus, clumpiness?	Circinus galaxy
Kishimoto+ 2009	Tori seem to have common radial structure	3 sources
Raban+ 2009	The inner disk part is misaligned	NGC 1068
Tristram+ 2009	Many AGNs have parsec-scale dust; tori sizes go with luminosity as s ~ L ^{0.5}	10 sources
Burtscher+ 2009	This Sy I torus is similar to the type 2 tori	NGC 4151
Burtscher+ 2010	The resolved mid-IR emission is not well fitted by an elongated disk	Centaurus A
Burtscher 2011 (Ph.D. thesis, ADS)	Observing + data reduction method for weak targets; MIDI Large Programme	17 sources
Tristram+ 2011	The mid-IR emission comes from scales ~30x larger than the near-IR emission	10 sources
Kishimoto+ 2011	Revised size–luminosity relation, s constant with L at 13 µm!	6 sources

MIDI Large Programme + Archive

Have a statistically useful sample of resolved AGN tori to compare with various other AGN properties

MIDI Large Programme + Archive

- Have a statistically useful sample of resolved AGN tori to compare with various other AGN properties
- Observe 3 more galaxies in detail to answer detailed questions about the dust distribution, composition, chemistry?

MIDI Large Programme + Archive

- Have a statistically useful sample of resolved AGN tori to compare with various other AGN properties
- Observe 3 more galaxies in detail to answer detailed questions about the dust distribution, composition, chemistry?
- LP+: 15.6 UT nights observed, ca. 10 million frames

val

de

MIDI Large Programme + Archive

Have a statistically useful sample of resolved AGN tori to compare with

PrBut: to increase the sample, oneOfneeds to observe sub-Jy targets!

questions about the dust distribution, composition, chemistry?

 LP+: 15.6 UT nights observed, ca. 10 million frames successful observations (29 targets)

Sy I

5

- Different observing mode: cal track – sci track – cal track
 – ...; now also
 offered by ESO in
 SM: ,,correlated
 flux mode"
- New data reduction (EWS 2.0 – soon to be released, see http:// www.strw.leidenuni v.nl/~jaffe/ews/)

Observing faint targets

- Different observing mode: cal track – sci track – cal track
 – ...; now also offered by ESO in SM: ,,correlated flux mode"
- New data reduction (EWS 2.0 – soon to be released, see http:// www.strw.leidenuni v.nl/~jaffe/ews/)

• Direct calibration of correlated fluxes, no visibilities + revised error bars

does not depend on atmospheric transmission (so much)

$$V = \frac{V_{\text{ins,target}}}{V_{\text{ins,cal}}} \cdot V_{\text{cal}},$$
$$V_{\text{ins,target}} = \frac{F_{\nu}}{F_{\text{total}}}$$

sensitive to atmospheric variations, but less noisy

$$F_{\nu} = \frac{I_{\rm corr}}{I_{\rm corr,cal}} \cdot F_{\nu,cal}$$

Observing faint targets

Direct calibration of correlated fluxes, no visibilities + revised error bars

does not depend on atmospheric transmission (so much)

$$V = \frac{V_{\text{ins,target}}}{V_{\text{ins,cal}}} \cdot V_{\text{cal}},$$
$$V_{\text{ins,target}} = \frac{F_{\nu}}{F_{\text{total}}}$$

sensitive to atmospheric variations, but less noisy

$$F_{\nu} = \frac{I_{\rm corr}}{I_{\rm corr,cal}} \cdot F_{\nu,\rm cal}$$

Observing faint targets

• Direct calibration of correlated fluxes, no visibilities + revised error bars

does not depend on atmospheric transmission (so much)

$$V = \frac{V_{\text{ins,target}}}{V_{\text{ins,cal}}} \cdot V_{\text{cal}},$$
$$V_{\text{ins,target}} = \frac{F_{\nu}}{F_{\text{total}}}$$

sensitive to atmospheric variations, but less noisy

$$F_{\nu} = \frac{I_{\rm corr}}{I_{\rm corr,cal}} \cdot F_{\nu,\rm cal}$$

• Automatic (and objective?) flagging of observations

(u,v) coverages

Asymmetries?

Asymmetries?

Resolving AGN tori

-+ MIDI ♦ VISIR

0

2.0×10⁶

0.0

∄

 6.0×10^{6}

4.0×10⁶

Ŧ

 8.0×10^{6}

Spatial frequency BL_{λ} [fringe cycles / rad]

1.0×10⁷

Ξ

Ŧ

1.4×10⁷

Ŧ

1.2×10⁷

Resolving AGN tori

Size-luminosity relation Young Stellar Objects

Size–luminosity relation Active Galactic Nuclei

100

 L_{35} (12.5 μ m)

Luminosity / 10e35 W

16

10000

1000

Wishlist for interferometry at the VLTI

 More reliability of the results through better controlled observing techniques: IRIS images, reliable MACAO Strehls

Wishlist for interferometry at the VLTI

- More reliability of the results through better controlled observing techniques: IRIS images, reliable MACAO Strehls
- Hybrid AT-UT combinations will allow ~4x more sensitivity + new unique baselines: constrain extended emission

Wishlist for interferometry at the VLTI

- More reliability of the results through better controlled observing techniques: IRIS images, reliable MACAO Strehls
- Hybrid AT-UT combinations will allow ~4x more sensitivity + new unique baselines: constrain extended emission
 - Most-efficient fringe trackers to increase integration time

Conclusions

- Mid-IR interferometry enables the observation of high surfacebrightness compact objects and paves the way for the 2nd generation instruments. We can now observe fringes with MIDI that are ~ 10x fainter than originally expected – thanks to continous (software) developments both on Paranal and offline.
 - Only with interferometry can AGN "tori" be resolved. Their sizes are ~ 10-100 mas (~ 1-10 parsecs); their structure is probably complex.
- The VLTI/MIDI Large Programme increased the sample of resolved tori by 13; resolved dust on the parsec scale has been found in (almost) all mid-IR bright AGNs, both type 1 and type 2
- The torus size s scales with luminosity L as s ~ $L^{0.5}$
- The nature of the ,point source' is not yet clear