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What'’s inside the dust?

Disk evolution and the main sequence

Outstanding issues and open questions

Covered in later talks: dust evolution and winds, more
on massive stars




ALMA

Direct imaging (HST or 8-meter ground-based)

Near-IR interferometry - '
Mid-IR interferometry
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ARAA, Dullemond and Monnier, 2010




Near-IR interferometry

Mid-IR interferometry
=

Magnetospheric
accretion

Planet-forming
D)= Pure gas disk Dust inner rim i

UV continuum, Near-IR dust 10AU

H-recombination lines continuum

Near-IR continuum Mid-IR:
(origin unclear so far) dust continuum
+ atomic lines (Br-y) + molecular lines

+ occasional molecular (H,0, CO,, ...)

lines (H,0, CO, OH)



Size predictions from disk
models fit to other kinds of data
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AB Aur (Millan-Gabet et al 1999, I0TA)

Survey of 15 Herbigs (Millan-Gabet et al

I28_|QA ; Infrared Optical Telescope Array - N>_|_ Tau N

General conclusions: 04f —— 1.46 mas (0.2 AU) Gaussian

* Late type Herbigs NOT consistent with S 2.38 mas (0.33 AU) Uniform disk
flat accretion disks (too large, too few oz -uene Accretion disk (Ghez)
1nCl]ned SourceS) 01f =mimme Accretion disk (Akeson)

° T Tau r]S . . . . | Akeson et al 2000

e 2 sources observed at Palomar Testbed il
Interferometer - PTI (Akeson et al 2000)

e Also larger than predicted, but inclined
disks observed

40 60
Projected baseline (

These observations plus the Herbig SED NIR bump can both be explained by an
inner dust rim at the dust sublimation radius (Natta et al 2001, Tuthill et al 2001)



| Ll | ! 1 ] P |
100.00

o HAe Objects

HBe Objects -
o TTS Objects P
L ubplimation radjus: direct dust heating, backwarming. -
R guB !ma 10N ra !us: Irec} gus{ neagna, nocbac warr%nng -
L s Sublimation radius: standard model i

over several orders of

g . 10.00:— .
magnitude in 5
luminosity 2 | 7 :
Some of the more § 100k i :
massive Herbigs (early - o E

Be) are consistent
with optically thick 0.10
inner cavity

NN T lllllll
" \
1 L lllllll

001k

—
= =
o™

10° 10° 10*
Lstar + Laccretion (Lsolar)



Curved Rim - £=038 - Vetical Rim

S5 +

| I S ) B O G I P
N o “
&
-
L' 1 1 1
N o

1]

1

;
+

=However, due to the dust
evaporation temperature
dependence on density, a rounded
rim is predcited
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*The shape of the inner rim
(vertical vs. curved, is best
measured by closure phases)
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= The very low visibilities
measured by the CHARA
longest baselines (~300m)
cannot be reproduced by
detailed models of inner dust
rim (they cannot be made
smooth enough).

»Best explained by adding
NIR emitting gas inside the
dust sublimation radius.

Visibility
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Visibility curve for MWC275
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» Eisner et al (2010) resolved the Brackett gamma line in
young stellar objects

« Example object MWC 1080 (young B star): Brackett gamma is
more compact than the continuum and is consistent with a disk

origin for the emission line

Eisner et al. 2010
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0.6

Disk truncated by
magnetosphere

Tatulli et al. (2007)

microns




U OC Y d DDc \/ OLC - - 0 J F

e Could be cleared or contain optically thin material

e Suggested clearing mechanisms include grain growth,
dynamical clearing from a companion (stellar or planetary)
or photoevaporation
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Companion limits vs. Position Companion limits vs. Flux Ratio

0.03F PRI " -
F 97.7% of positions excluded.

0.02F | 98.2% excluded outside mask

0.01F

0.00¢

cannot be exclude

-0.01f

Fraction of FOV where com(rantion

-0.02}

10,03 Foeeeeteee : -
-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.1
Separation [arcsec] Companion Flux Ratio




Pott et al (2009)

Reduced %2 to Kl V2 %2 vs radius, for SED flux ratio

Radius [AU]
1.0

Y

Best fits consistent with
constraint from SED:
0.22< K;;o/Kysar <0.39 -
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Flux ratio for Ring/Star
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0.001 0.010
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SED fit ring radius: 0.12-0.15AU (Espaillat et al. 2008)

Kl Best-fit ring radius: 0.12 £ 0.01 AU



Green line: flux profile the same
for both models, line width set
from Eisner et al (2010) data
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Normalized flu
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e Akeson et al (2011) used Kl and CHARA data
to constrain the inner disk structure Wavelength (microns)

e Near-infrared interferometry shows a
significant scattering component in the
inner tens of AU: modeling this data along
with mid-infrared and mm interferometry
requires an opacity thick material within 4
AU followed by a gap
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e New Kl data detects the Br gamma line

(Akeson et al, in prep) Blue model: Br gamma has same

® Using S]mple geometrlc models, the Br spatial distribution as near-infrared
gamma emission arises from scales less
than 3.0 mas or 0.16 AU

dust; can clearly be ruled out

Red model: best fit to
visibility; Br gamma size scale
<0.16 AU




e Fractional luminosity is much, much smaller than for
circumstellar disks so observing is more difficult

¢ Two approaches
e High precision visibilities (FLUOR/CHARA, I0TA, VINCI &

PIONIER at VLTI, etc)

e Several intermediate-mass stars found to have inner hot
dust (Absil et al 2006, 2008, Akeson et al 2009)

e Suppress light from star - interferometric nulling (KI, LBTI)
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Three teams competitively selected F
e Pls: P. Hinz, M. Kuchner and E. Serabyn -
Primary | nuistar | S€CONdary
Nuller Nuller

Detailed description of data and analysis in Colavita : . ; ;
et al (2009), PASP v % v
Science usage ¥ '

® 44 unique targets observed out of 46 submitted é’;‘;‘::

e No significant excess for 40 targets Combiner

e |mprovement in factor of 3-5 over Spitzer limits
on warm dust

Coherent
detection

“Outer”
Cross-
Combiner

MIR camera KALI




feature observed

e 2 possible detections:
y Oph: z =200 + 80
aAql: z =600+ 200

On-going follow up work to
confirm these detections and
try to detect any corresponding
near-IR dust emission (using
CHARA interferometry.

e 22 non-detections: derive exozodi
upper limits.

e For the individual stars,
exozodi 36 upper limits are in
the range 200 - 1000 zodis.

7%53 better limits than Spitzer/

* Mean exozodl level for the
detections: < 150 (3 o)

Number of Zodis (z)
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Millan-Gabet et al. ApJ, 2011



CO line




e Near-IR emission dominated by dust sublimation radius
e Significant gas is present within that radius
e Details of inner rim need to be determined
e Exact shape
e Transition disk holes and gaps

e Future directions
e Gas emission in T Tauri’s and transition disks
e |maging
¢ Multi-wavelength detailed studies of more objects




