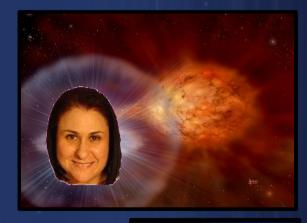
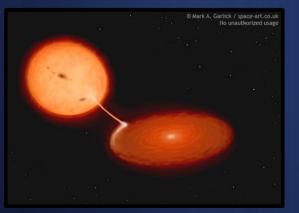
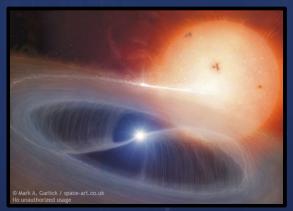

Moderate Resolution NIR Spectra and Modeling **the Secondary Stars** of Cataclysmic Variables

Ryan T. Hamilton (New Mexico State University)

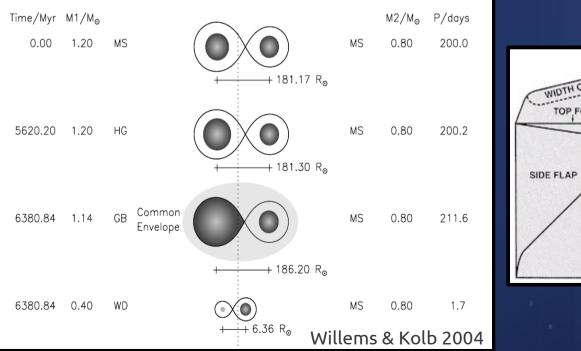

Tom Harrison (Advisor, NMSU), Steve Howell (NOAO), Claus Tappert (Universidad de Valparaiso), Paula Szkody (U. Washington) Katia Cunha (NOAO), ...And Many More

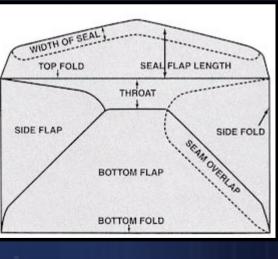

Talk Outline


- (Very Brief) Introduction
 - Why Bother? Secondaries should be dull...
 - UV C IV/N V ratios
 - Recent NIR Observations
- UV-NIR Link and implications
- Description of Ph.D. thesis work
 - Very much a work-in-progress and just getting up and running
 - Results coming soon :)

Intro: CV Menagerie

- One progenitor pop., but HUGE variety!
 Appear in all shapes, sizes, and flavors
 - Classical Novae
 - Non-Magnetic Systems
 - Nova-Like Systems
 - Magnetic Systems

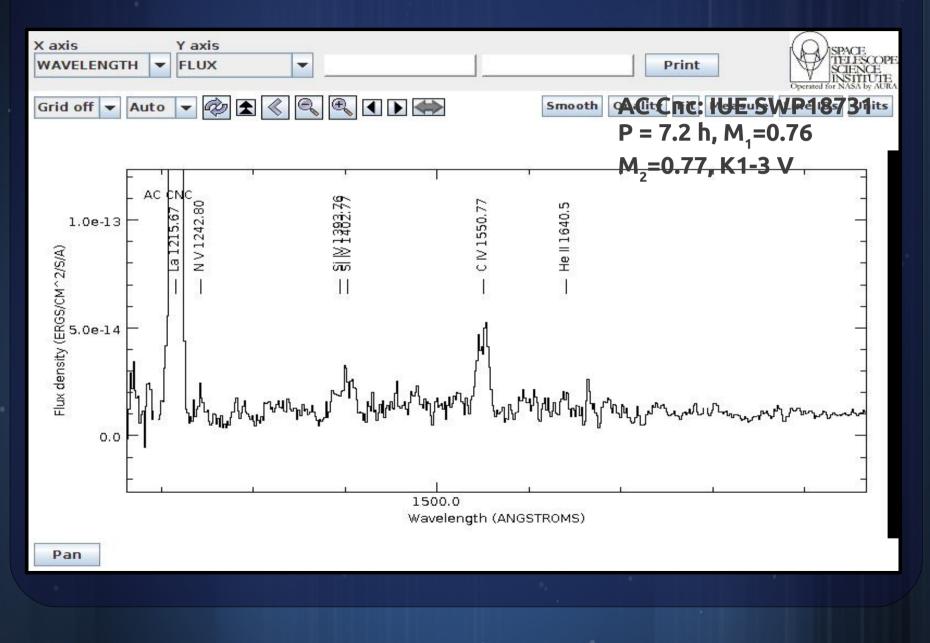




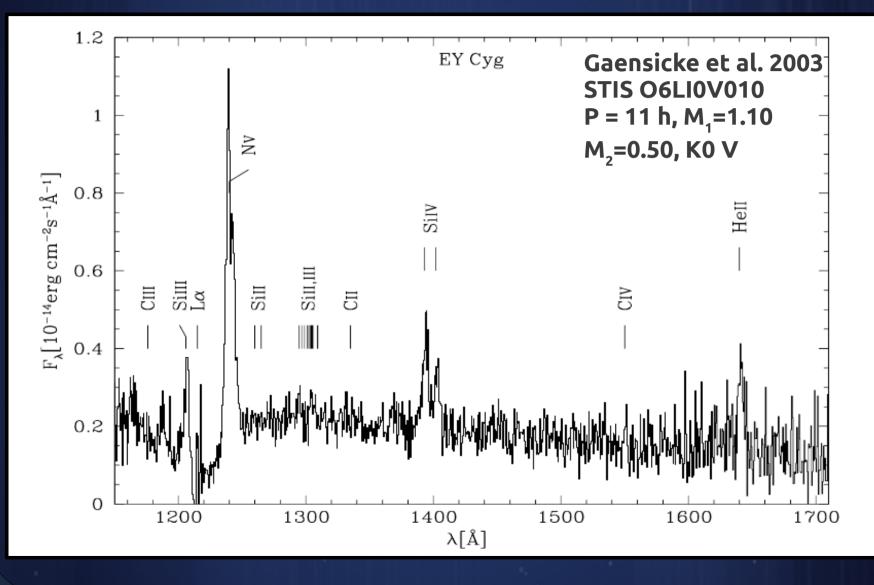
© Mark A. Garlick / space-art.co.uk No unauthorized usage

Intro: "Standard" CV Scenario

- Start with wide binaries of moderate orbital period and unequal masses
 - Ritter 2010 review & references therein
 - Also everyone who talked yesterday



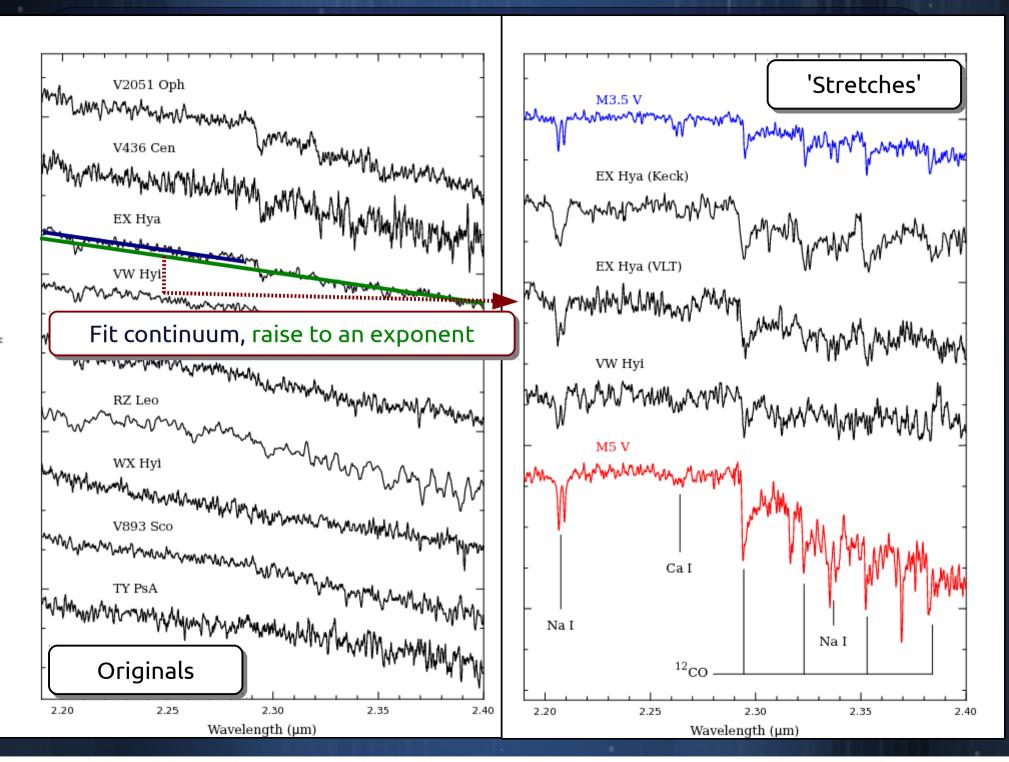
Intro: UV Observations


- Increasing number of strange C/N ratios seen in UV spectra (~13-15 currently)
 - Presence of CNO processed material!
 - Gänsicke et al. 2003; Gänsicke 2004; de Martino and Gänsicke 2009; Sanad 2011

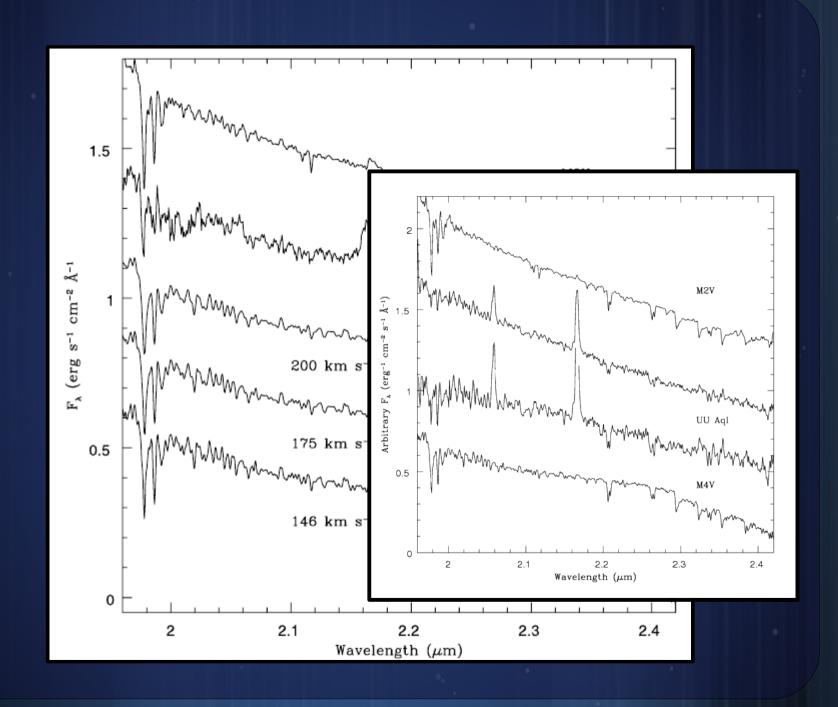
Really strong N V, very weak C IV
C IV can be completely absent!
(seen in other lines as well, e.g. C III 1247Å)

Intro: "Normal" CV in UV

Intro: "Weird" CV in UV


Intro: NIR Observations

- Increasing number of strange CO bands seen in NIR spectra
 - CO bands weaker than expected for given spectral type or just not there
 - Especially in long period systems above gap
 - Deficit of C, O, or something else?
- ¹³C enhancements seen as well
 - More ¹³C means the secondary star had nuclear processed material before contact!


Intro: "Normal" CVs in NIR

- Taken from Hamilton et al. 2011
- Doubled the sub-gap NIR sample
- Systems below period gap harder to detect
 - Faint, later type secondaries than systems above the gap
 - Short P_{orb} makes it difficult since K₂ is so high

 Need short exposures (LARGE telescopes) to resolve anything of use

Arbitrary F_{λ}

UV-NIR Connection

- Cases where have both UV and NIR spectra, see CNO material
 - UV: High N V, Weak C IV \rightarrow CNO material
 - NIR: Weak CO, enhanced ${}^{13}C \rightarrow CNO$ material
- Tracing CNO processed material from the secondary to the WD/disk
 - Require initially more massive secondaries
 - Different progenitor population? Thermal-Timescale Mass Transfer (TTMT)?
 - Schenker et. al (2002)

More Massive Secondaries...?

- If secondary initially r has time to chemically
 - Marks & Sarna 1998

Model	M_{1i}	$M_{1\mathrm{f}}$	M_{2i}	$M_{ m 2f}$	P_{i}	P_{f}
	$[M_{\odot}]$	$[M_{\odot}]$	[M _☉]	$[M_{\odot}]$	[d]	[d]
46	1.2	1.068	1.5	0.185	1.166	1.092
47	1.0	0.864	1.25	0.138	0.909	0.127
48	0.8	0.692	1.0	0.126	0.709	0.080

So What Will We Do?

• Abundances:

- Weak CO \rightarrow C deficit? Is ¹³C really enhanced?
- Synthetic spectra to answer
 - Use two different codes/models
- Find best match to given observations in a robust and repeatable way
- Need to understand systematics, biases, and uncertainties in the sample
 - Require homogeneous data reductions?

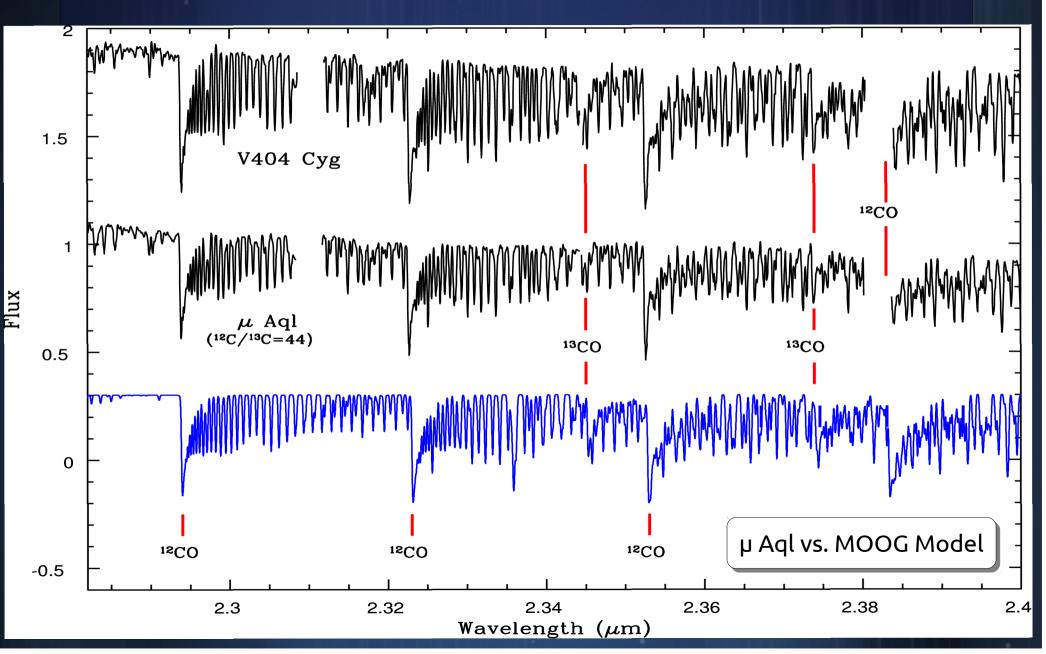
NIR Sample Stats

- Most observed at $2000 \le R \le 6000$
- Few (6-7) observed at R > 10000
- 61 systems total:
 - 19 Рге-CVs
 - Some at R ~ 1500 but no disk contamination
 - 31 Non-magnetic systems
 - 19 above the gap, 12 below
 - 11 Magnetic systems
 - Includes IPs as well

The Big List

Table 4 CO Absorption Strength Across all CV Subtypes					Non-magnetic Systems					
	Magnetic	Systems			BT Mon	NL SW	7.99	ND	8	
GK Per	DN Na ID	47.0	W		SY Cnc	DN ZC	9.12	ND^*	5	
	DN Na IP	47.9	W	2	RU Peg	DN UG	8.99	W	5	
AE Aqr	NL DQ	9.86	Wf	7	CH UMa	DN UG	8.23	W	5	
V1309 Ori	NL AM	7.98	W ^g	8	MU Cen	DN UG	8.21	w	5	
MQ Dra										
									5	
	NL 🕍		- Y - C	Ċ						
	NL MI	nmai			'anne S	NCLEW				
	NL AM	67		2.3	ange S	y s ec in	5 0 4			
	NL IP			110	n of al	2044				

0 Pre-CVs (0%) 13/19 - Long Period Non-Magnetic (68%) 3/12 - Short Period Non-Magnetic (25%) 3/11 - Magnetic, includes IPs (27%)

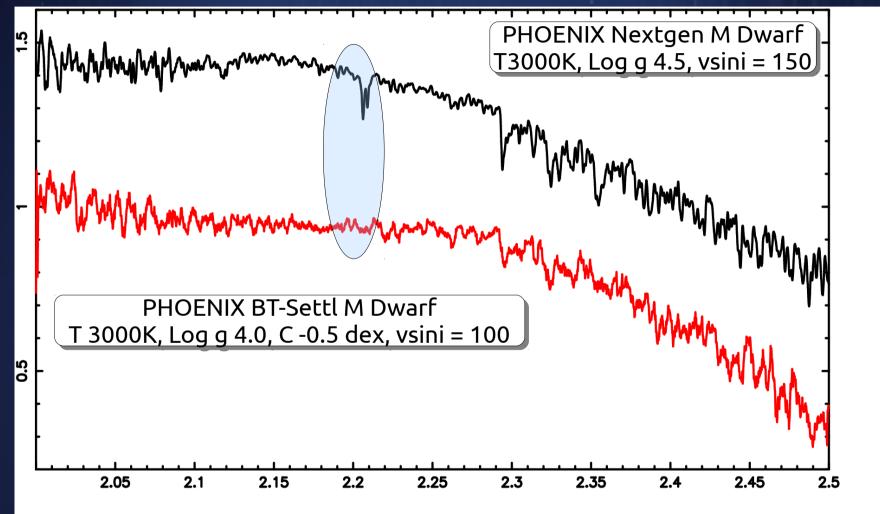

* Third light contamination in the system, see North et al. (2000)

Modeling the Big List

MOOG

- Chris Sneden, UT Austin
- LTE only
 - Bring your own atmosphere and linelist
 - Does Not Handle Triatomic Molecules (H,O)
- Extremely common and well used
- FAST computations

Sample MOOG Spectra



Modeling the Big List

PHOENIX

- Peter Hauschildt (et al.)
- LTE/NLTE
- Complete (complex) package
 - Handles All Important Species/Molecules
 - Can include irradiation by other source (WD)
- **Gold standard for cool star community**
- SLOW computations (~days/weeks)
 - Available through (buggy) web-based interface

Sample PHOENIX Spectra

rthamilt 18-Feb-2011 11:40

(Very Near) Future Work

- Fit highest resolution spectra first
 - PHOENIX for mid-late M dwarfs, else MOOG
 - M-K dwarfs, CVs, IRTF templates w/ known parameters
 - Fit lower resolution observations of these same objects to sanity check
- Once sufficient agreement in fitting, move down the list in terms of resolution
- Results coming soon! Too early to show

Summary

- Short period systems mostly normal
- Pre-CV/Magnetic systems appear mostly normal as well
- Long period systems strange
 - 13/19 show weak/absent CO features (~70%)
 - Some enhanced ¹³CO (Harrison et al. 2005)
- Synthetic spectra to play with
 - C abundance imply more massive secondary star progenitors?