Simulations of the Common Envelope Interaction using Grid-Based and SPH Codes

Jean-Claude Passy (UVic, AMNH)

March 8, 2011

Jean-Claude Passy (UVic, AMNH) Simulations of the Common Envelope Interaction using Gri

• • • • •

Collaborators - Acknowledgment

- Orsola De Marco (Macq. University)
- Falk Herwig (UVic)
- Mordecai-Mark Mac-Low (AMNH)
- Chris L. Fryer, Steven Diehl, Gabriel Rockefeller (LANL)
- Greg L. Bryan (Columbia)
- Jefferey S. Oishi (Kavli Institute)
- NSF grant 0607111

Motivation

- 2 Code description
 - The hydrodynamics codes
 - Model
- 3 The simulations Results
 - Runs
 - Different M₂ Same numerical setup
 - Different numerical setup $M_2=0.6~M_\odot$

4 Discussion

- Comparison with observations
- The role of convection
- Unbinding the envelope

5 Summary

- ${\small \textbf{0}} \ \ {\rm Direct\ observations\ are\ unlikely\ } \rightarrow {\rm simulations\ should\ help}$
- So far, only a few "recent" hydrodynamics simulations exist
 - Sandquist et al. 1998
 - De Marco et al. 2003
 - Ricker & Taam 2008
- So comparison between different numerical methods
- O No comparison with observations

• • = • • = •

The hydrodynamics codes Model

- Enzo, a 3D AMR grid-based code (Eulerian)
- **SNSPH**, a 3D Smoothed-Particle Hydrodynamics code using tree gravity (Lagrangian)

	ENZO	SNSPH	
Туре	Eulerian Lagrangia		
Numerical viscosity	Yes	No	
Conservative	\approx	Inherent	
Bound. Cs	Large finite grids	Vacuum/None	
Resolution	Adaptive	Mass	
Shocks	+	-	
Res. at given N	+ -		

4 A > 4 > 4 - 4

3.5

The hydrodynamics codes Model

Both codes solve the **fully compressible hydrodynamics** equations with **self-gravity** included.

In the case of a CE interaction between a giant star (primary) and a MS companion (secondary) :

- The radius of the secondary ($\approx 0.5 \text{ R}_{\odot}$) $\ll R_1$ \Rightarrow Secondary as a point mass particle
- The primary's core is also very small (\approx 0.01 $R_{\odot})$ and dense \Rightarrow Primary core also as a point mass particle

・ロト ・ 同ト ・ ヨト ・ ヨト

Runs Different M_2 - Same numerical setup

- 1D model of a RGB obtained with EVOL (Herwig 2000): $M_1 = 0.88 \text{ M}_{\odot}, M_c = 0.392 \text{ M}_{\odot}, R = 83 \text{ R}_{\odot}$
- Companion masses from 0.9 down to 0.1 M_{\odot}

	$N_{part} \mbox{ or } N_{tot}$	$M_2 (M_{\odot})$	A_0 (R $_{\odot}$)	P ₀ (days)	v ₀ /v _{circ}
SPH1	500 000	0.9	83	66	1
SPH2	500 000	0.6	83	72	1
SPH3	500 000	0.3	83	81	1
SPH4	500 000	0.15	83	86	1
SPH5	500 000	0.1	83	88	1
Enzo1	128 ³	0.9	91	75	1
Enzo2	128 ³	0.6	91	83	1
Enzo3	128 ³	0.3	91	93	1
Enzo4	128 ³	0.15	91	99	1
Enzo5	128 ³	0.1	91	102	1
Enzo6	256 ³	0.9	85	68	1
Enzo7	256 ³	0.6	85	75	1
Enzo8	256 ³	0.3	85	84	1
Enzo9	256 ³	0.15	85	89	1
Enzo10	256 ³	0.1	85	92	1
Enzo11	128 ³	0.6	91	83	1.05
Enzo12	128 ³	0.6	95.55	83	1

Jean-Claude Passy (UVic, AMNH)

Simulations of the Common Envelope Interaction using Gri

-

Figure: Orbital separation for the 256³ Enzo simulations.

Jean-Claude Passy (UVic, AMNH) Simulations of the Common Envelope Interaction using Gri

< A

-

Jean-Claude Passy (UVic, AMNH)

Simulations of the Common Envelope Interaction using Gri

Comparison with observations The role of convection Unbinding the envelope

In De Marco et al. 2011:

- Modification of the α -formalism
- Calculation of the λ parameter using SE tracks
- Deduction the initial configuration of 31 PCE systems
- Derivation a possible anti-correlation of α with q

Jean-Claude Passy (UVic, AMNH)

Simulations of the Common Envelope Interaction using Gri

- For $M_2 \geq 0.3~{
 m M}_{\odot}$, the results converge
- $\bullet\,$ For $M_2 < 0.3\,\,M_\odot$, the resolution is not sufficient
- α are higher than the ones given by De Marco et al. 2011
- Final separations larger than almost any know post-CE systems

Comparison with observations The role of convection Unbinding the envelope

• The adiabatic mass-radius exponent is defined as

$$\xi_{ad} \equiv \left(\frac{\partial \ln M_1}{\partial \ln R_1}\right)_{ad}$$

- For a convective star, −1/3 ≤ ξ_{ad} ≤ 0
 ⇒ adiabatic mass loss (Hjellming & Taam 1987, Ge et al. 2010)
- Convection occurs if $\nabla_{ad} < \nabla_{rad}$

Jean-Claude Passy (UVic, AMNH)

Simulations of the Common Envelope Interaction using Gri

Comparison with observations The role of convection Unbinding the envelope

- 80 % of the gas is still bound at the end !
- a_{rad} is 2 orders of mag. smaller than a_{grav}
- Fall back ? Circumbinary disk ?
- Planet formation ? (Geier 2009, Beuermann et al 2010)
- Envelope eventually unbound ? (later phase, recombination...)

イロト イポト イラト イラト

- 17 simulations carried out with Enzo and SNSPH
- Results are very similar for $M_2 \ge 0.6~{
 m M}_\odot$
- For lower masses, Enzo resolution needs to be increased
- Envelope is not unbound and A_f are larger than observations

- Run more simulations with different primaries
- Use Enzo with nested grids/AMR
- Reproduce convection with an ideal gas EOS

・ロト ・ 同ト ・ ヨト ・ ヨト