

Using ALMA

concepts and tools of science operations, interaction with and support to the users

Paola Andreani European Southern Observatory

Meaning of ALMA Operations and the Joint ALMA Observatory

Science Operations Astronomer's perspective

Principles:

- Non-experts should be able to use ALMA
- Dynamic scheduler to match observing conditions
- Reliable and consistent calibration
- ◆Data public in timely fashion

PERU

BOLIVIA

High-level concepts for Science Operations

- Observations will be done in service observing mode with flexible (dynamic) scheduling.
- Observations 24h/day interrupted by maintenance periods.
- All observations are executed in the form of scheduling blocks (SBs), each of which contains all information necessary to schedule and execute the observations.
- The default output to the astronomer are reliable images, calibrated according to the calibration plan.
- The Joint ALMA Observatory (JAO) is responsible for the data product quality.
- All science and calibration raw data are captured and archived.

Science Deliverables:

- uv-plane astronomical source and calibration data.
- Processed images, with supporting information on the data processing and quality assurance.
- Off-line data reduction software, including user support for installation and basic usage.
- Software tools for proposal and observation preparation, including user documentation.
- ALMA users manual.

User support:

- Helpdesk
- f2f support

ALMA Science Operations sites OSF, Santiago and the ARCs

The Regional centres

ALMA Operations: Three ALMA Regional Centres - ARCs

Face to face + other user support

NAASC

Enhanced services are needed to provide advanced user support, algorithm development, student programs, EPO, grants

DSO provides:

- Array operations
- Scheduling of projects
- Execution of observations
- Data quality assurance and trend analysis
- Calibration plan maintenance
- Delivery of data to the archives
- Archive operations
- Pipeline operations

Meaning of ALMA Operations

What does science Operations mean?

- Phase I + II proposals through ARCs (time estimator, end-to-end data simulator)
- Create project (scheduling blocks) to OSF
- Data taken in service mode, dynamic scheduler selects programmes according to science rating weather conditions, array configuration, consistent calibration
- Pipeline data reduction, quality control, archive
- Advanced data reduction at ARCs

Getting ALMA time

Getting ALMA time

Phase I

❖ Joint ALMA Observatory issues calls for proposals

EUROPEAN ARC

The ALMA observing tool

The ALMA Observing tool

- Split Observing Programs in two parts:
- a Phase I Observing Proposal
 - emphasis on the scientific justification of the proposed observations.
- a Phase II Observing Program
 - submitted only if observing time has been granted.
- Set of Scheduling Blocks (SBs)
 - required to drive observing with ALMA.
 - the SB contains a full description of how the science target and the calibration targets are to be observed
- sets of SBs can be combined with a description for the post processing of the data, ultimately resulting in an image.

Getting ALMA time

Phase II

- Phase I: Proposals are submitted using ALMA Observing Tool
 - Phase II: Successful Pls submit observing programme using the Observing Tool
 - Preparation of the scheduling blocks
 - European ARC helps with observation planning and validates observing schedule

EUROPEAN ARC ALMA Regional Centre

The ALMA observing tool

Getting ALMA data

The ARCs and their relation to the JAO

Data reduction

The ALMA offline reduction

Simulating the data

ALMA simulator

It is possible to simulate with the CASA package (see Pamela's talk) observations with ALMA.

The ALMA simulator is a task (in CASA), which produces

- synthetic visibilities
- a synthesized deconvolved image
- some analysis tools (image fidelity etc.)

The simulator models:

- thermal noise
- atmospheric phase delay (using a mock phase screen)
- cross-polarization leakage, gain drift

Paola Andreani, ALMA Operations concepts

In one command, CASA/generates

- o uv data (with therm'd noise if desired)
- o a dirty and cleaned image.
- o a diagnostic window including
 - your input
 - the simulated image
 - the difference
 - uv coverage
 - and dirty beam or PSF

Paola Andreani, ALMA Operations concepts

Paola Andreani European Southern Observatory

The ALMA Regional Centres

The European ARC

The European ARC

The ALMA Regional Centres

The European ARC network

Paola Andreani European Southern Observatory

The European ARC

Core functions

Scientific support: Proposal & observation preparation

user support

– Archive Operations:

host a copy, data delivery

- Astronomer on duty at OSE
- Science community activity
- User support: f2f help

ESO: ARC Department

ARC nodes

Non-core functions

Data reduction

- Advanced pipeline
- Extended archive support
- Support for special projects
- Science community activity

training, schools, workshops

ARC nodes

ESO ARC + nodes
Paola Andreani
European Southern

Current Timeline

- Start of CSV (Commissioning and Science Verification): Jan 2010 (3 antennas at the AOS)
- ESDP (Early Science Decision Point): End 2010 (call for proposals)
 - Mirror Archives in place
 - ALMA User Portal activated
 - ALMA Helpdesk activated
- Deadline for proposals (Early 2011)
 - PRC review procedure initiated
- Deadline for PRC final ranking (Mid 2011)
 - Preparation of SBs
- Start Early Science: Autumn 2011
 - Take and deliver data
- Inauguration: September 2012
 - More than 50 fully equipped antennas
- Baseline ALMA Construction Complete 2013

Early Science Operations

- Start Science Operations before the ALMA construction finishes
- Conditions for Early Science Operations:
 - 16 antennas with at least 4 receiver bands
 - Single field interferometry and pointed mosaics
 - Baselines out to 1 km
 - Basic set of spectral line modes
 - Single dish mapping (zero baseline observations) of extended objects in continuum and spectral line mode
 - Calibration better or comparable with existing mm-arrays
- Early Science Operations
 - One year scheduling period
 - Time shared with commissioning. At least 33% of available time will be used for observations

Questions?