

S. Štefl¹, A. Merand¹, J.-B. LeBouquin², F. Rantakyro³, P. Bourget¹, A. Carciofi⁴, T. Rivinius¹, D. Baade⁵

¹ European Organisation for Astronomical Research in the Southern Hemisphere, Paranal and La Silla Observatories, Chile

² Lab. d'Astrophysique de l'Observatoire de Grenoble, France

⁴ Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão 1226, São Paulo, SP 05508-900, Brazil

⁵ European Organisation for Astronomical Research in the Southern Hemisphere, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München, Germany

I. History of the AMBER dispersive unit status

- AMBER specification: non-repeatability in the dispersion unit (DIU) position up to 10 pixels, with a goal 1 pixel. No λ calibration assumed.
- ♦ Acreti 2003: DIU tests: accuracy within 1 pixel declared
- Grenoble 2003 Paranal 2005: non-repeatability of a few tens of pixels. A software patch implemented to center the spectral window before performing the P2VM.
- Paranal 2006-7: accelerating degradation leading to a nonrepeatability up to a few hundreds of pixels even for low motor speeds.
- September 2007: Emergency spectrograph intervention: non-repeatability improved to 20-30 pixels, when moving at 1000 steps/sec.
- January 2008: Large intervention detailed analysis od the DIU mechanism, spectrograph twice warmed and opened, main resuls:
 - A new worm with its bearings installed. It allows to adjust the worm-wheel backlash (see Fig. 1)
 - Dispersion unit motor replaced
 Intensive DILI tests performed
 - Intensive DIU tests performed

Fig. 1: Critical DIU part, which was replaced during the 2008 intervention.

Tests summary and recommendations

- ★ Temperatures of the controller board and of the motor are critical DIU parameters. The DIU should be operated at fixed board and motor temperatures.
- DIU should be systematically inicialized and then moved directly to the setting position (without moving to zero order position).
- The mechanism itself produces an uncertainity in the DUI positioning of the order of several pixels

II. How accurate is our AMBER wavelengths calibration now?

a) Stabily on a time scale of several months:

- Observing campaign on the Be star 28 (ω) CMa in November 2008 - May 2009 (ESO program 282.D-5014), 16 AMBER observations in the HR mode (R=1500), Br γ region, spectra extracted
- Quasi-simultaneous HR (R ~ 45 000) Phoenix/GEMINI spectra
- Cross-correlation of the AMBER and Phoenix Br γ profiles.

ulian date	Baseline	wavelength offset
Junan date	Dasenne	$[x 10^{-3} \mu m]$
54782.28	G1-A0	-1 541
54762.20	K0-A0	-1.548
	K0-G1	-1.540
54782 32	G1-A0	-1.562
54762.52	K0 A0	1.546
	K0-G1	-1.555
5/18/10/33	G1 A0	1.602
54619.55	K0 A0	-1.002
	K0-A0	-1.005
54926 27	C1 A0	-1.011
54826.27	KO AO	-1.364
	K0-A0	-1.391
	K0-01	-1.393
4855.55	GI-A0	-1.545
	K0-A0	-1.554
54006.07	K0-G1	-1.556
54826.37	G1-A0	-1.545
	K0-A0	-1.554
	K0-G1	-1.556
54879.21	D0-H0	-1.519
	G1-D0	-1.547
	G1-G1	-1.546
54881.16	D0-H0	-1.555
	G1-D0	-1.573
	G1-G1	-1.547
54908.06	D0-H0	-1.536
	G1-D0	-1.578
	G1-G1	-1.546
54911.10	G1-A0	-1.553
	K0-A0	-1.522
	K0-G1	-1.543
54912.08	G1-A0	-1.574
	K0-A0	-1.576
	K0-G1	-1.611
54912.12	G1-A0	-1.550
	K0-A0	-1.550
	K0-G1	-1.590
54913.13	G1-A0	-1.539
	K0-A0	-1.517
	K0-G1	-1.572
54932.02	G1-A0	-1.534
	K0-A0	-1.518
	K0-G1	-1.556
54952.98	D0-H0	-1 595
51952.90	G1-D0	-1.608
	G1-G1	-1.571
54954.00	D0 H0	-1.571
54954.00	G1 D0	-1.556
	G1-D0	1.5/6
	01-01	=1)+()

b) Short-term stability

- Test with the ThAr lamp, high resolution, central wavelength 2.056 $\mu \mathrm{m}$
- ThAr spectra exposed before and after the calibrator

Fig. 2: Th Ar spectrum exposed before and after the calibration.

S	m	m	m	ອາ	r
~~	-	-			1

- ★ Wavelength offset is always negative (consistent with the known problem of lost steps during the DIU movement) and relatively stable on a long timescale. The mean offset derived from our limited sample for the high resolution mode and Br γ region (High-K-1-2.172 setting) and all used baselines is (-1.561 ± 0.024) x 10⁻³ μ (~16 pixels)
- ★ Drifts by a few pixels can appear even at th short timescale of the order of a calibration sequence

III. Can the calibration quality impact the science results

Example: HR mode, observations of circumstellar disks of Be stars in emission (mostly Br γ) lines:

- When fitting the visibility profiles, the wavelength offset must enter the fitting procedure as a free parameter
- Symmetric visibility profile (e.g. 28 CMa during our 2008/9 campaign) - the wavelengths offset is fitted unambiguously and does not affect significantly the fitting of physical disk parameters
- Asymmetric visibility profiles corresponding to a photocenter shift (e.g. ζ Tau) - The fitting procedure looks for a compromise between the wavelength offset and asymmetry of the visibility profile.
- ★ The unreliable AMBER wavelengths calibration can negatively influence the interpretation of science data

IV. Solutions being considered

- Measurements of the gratting position using a laser beam through the spot where one mounts the black body light and a software correction of the wavelength calibration.
 Proposed by F. Rantakyro, not further developed.
- Telluric lines: Wavelength calibration in some HR and MR settings can be performed with telluric lines except the the low-resolution mode. No telluric lines in some HR windows.
- ThAr lamp: First tests done in November 2009-January 2010.

V. Conclusions

- ★ Even after recommended hardware and software modifications, the DIU positioning is not within specifications.
- ★ The present -as well as close to the specification- accuracy of the DIU positioning implies undifined wavelengths offsets, which can impact the scientific interpretation of the data.
- ★ A goal of 1 pixel accuracy would very probably need a new mechanism design
- ★ Unlike the original concept, we recommend a standard spectroscopic wavelength calibration using calibration lamps or telluric spectra. Testing and optimization of both methods is in progress.

³ Gemini Observatory, Southern Operations Center, c/o AURA, Casilla 603, La Serena, Chile