Surface convection &

Red giants radii measurements

L. Piau, P. Kervella, S. Dib, P. Hauschildt

CEA-Saclay, SAp

The data

34 Giants & 4 subgiants

The stellar structure code : CESAM

Stellar evolution from ZAMS to $10^3 L_{\odot}$: 0.9 M $_{\odot}$ to 2.5 M $_{\odot}$

The radius is sensitive to :

The opacities OPAL & Ferguson (2004) ; composition Asplund et al. (2005)

The atmosphere boundary conditions Two grids of non grey T(τ) relations in Teff and log g Phoenix 1D models $\alpha_{mlt} = 2$ Atlas12 models $\alpha_{cgm} = 0.5$

The surface convection : $\Lambda = \alpha H_{o}$

Mixing length theory : α_{mlt} =1.58 (Boehm-Vitense 1958) Full spectrum of turbulence : α_{cgm} =0.77 (Canuto, Goldman & Mazzitelli 1996)

The cool edge of the RGB

The age of the RGB is constrained by

Local disk age ≤ 11.7±1.9 Gyr Globular clusters age ≤ 12.6 Gyr Liu & Chaboyer (2000) Krauss & Chaboyer (2<u>003)</u>

The MLT and the HR diagram

 T_{eff} & R constraints : no change of α_{mlt} from the Sun to the RGB

The CGM theory and the L vs. R² diagram

 T_{eff} & R constraints : slight drop of α_{cgm} from the Sun to the RGB

The cool edge of the RGB : summary

Mass (M_{\odot})	Convection	χ²HR	χ²LR²	Remark
0.95	α _{mlt} =1.58	0.15	0.45	Good fit
0.95	α_{cgm} =0.62	0.11	0.89	Good fit
0.95	α_{cgm} =0.77	5.1	7.1	Poor fit
0.92	α _{mlt} =1.58	0.23	4.2	Too old
1.25	α _{mlt} =1.58	0.11	3.1	Too high [Fe/H]

Mass repartition

Assumption

The mass distribution on the RGB is the present day mass function (No mass loss & sample identical to field stars)

$$rac{dN}{dM} \propto M^{-2.3\,to\,-2.7}$$
 Kroupa (2002)

Method Models from ZAMS to $10^3 L_{\odot}$: For : 1.5 M_☉ and 2.5 M_☉ For : [Fe/H] = 0, -0.17 and -0.34 For : α_{cgm} =0.77 and α_{cgm} =0.62

We compare the data distribution between tracks and the expected mass distribution on the RGB

Mass range	PDMF %	α_{cgm} =0.77	α _{cgm} =0.62
< 1.5 M_{\odot}	54	84 ± 15	48 ± 11
1.5 to 2.5 ${ m M}_{\odot}$	27	16 ± 7	40 ± 10
> 2.5M _☉	19	0	11 ± 5

Seismic constraints

$$\begin{split} \delta &\text{Eri}: 1.22 \pm 0.05 \text{ M}_{\odot} \text{, [Fe/H]} = 0.13 \text{ (!), } \alpha_{\text{ov}} = 0.1 \\ \epsilon &\text{Oph}: 1.85 \pm 0.05 \text{ M}_{\odot} \text{, [Fe/H]} = -0.27 \text{, } \alpha_{\text{ov}} = 0.2 \\ \xi &\text{Hya}: 2.65 \pm 0.05 \text{ M}_{\odot} \text{, [Fe/H]} = -0.04 \text{, } \alpha_{\text{ov}} = 0.2 \end{split}$$

Seismic constraints

$$\begin{split} &\delta \text{Eri}: 1.22 \pm 0.05 \text{ M}_{\odot} \text{, [Fe/H]} = 0.13 \text{ (!), } \alpha_{\text{ov}} = 0.1 \\ &\epsilon \text{Oph}: 1.85 \pm 0.05 \text{ M}_{\odot} \text{, [Fe/H]} = -0.27 \text{, } \alpha_{\text{ov}} = 0.2 \\ &\xi \text{Hya}: 2.65 \pm 0.05 \text{ M}_{\odot} \text{, [Fe/H]} = -0.04 \text{, } \alpha_{\text{ov}} = 0.2 \end{split}$$

Conclusions (I)

No need for change of MLT length scale

Slight drop of the CGM theory length scale

Results consistent in HR and LR² diagrams

Results on the cool edge/large radii consistent with mass distribution(?)

Piau et al. (2010), in prep

Conclusions (II)

Future :

Larger sample would enable tests based on mass repartition

Test very sensitive to radius and seismic constraints (Kepler, CoRoT)

Tests of other prescriptions of convection and 3D convection