Mining the PTI-archive: uncovering the pulsating photospheres of Miras

by Michel Hillen

Instituut voor Sterrenkunde KULeuven, Belgium Promotor: prof. Dr. Hans Van Winckel Co-promotor: Dr. Tijl Verhoelst Co-I: Dr: Bram Acke

Pulsations in AGB-stars?

Interferometry and the AGB

- Aim: "directly observe/probe the interplay between pulsating photosphere and levitated atmosphere as a function of time"
 - Snapshots
 - Le Bouquin (2009)
 - Ohnaka (2005)
 - Perrin (2004)
 - Several snapshots
 - Lacour (2009)
 - Ohnaka (2007)
 - Time-resolved
 - Woodruff (2008) (Keck Aperture Masking Experiment)
 - Thompson(2002) (S Lac and RZ Peg with PTI)

Mining the PTI archive

- Palomar Testbed Interferometer (dual-star architecture, B ~110m) (Colavita 1999)
- Goals: diff. astrometry in search of planets + technology demonstrator for Keck and SIM
- > 50 publications (YSO's, binary orbits, PHASES, oblateness of Altair,...)
- 99 Miras observed between 1999 and 2006
- > 5000 spectrally dispersed (5 channels)
 observations in K + 150 in H (4 channels)

pilot study of R Boo (M3e-M8e,P=223d,d=750 pc)

A simple model: $UD(t,\lambda) \sim sin(t,\lambda)$

In agreement with Thompson (2002)

The molecular layer (molsphere) model

- Tsuji (1987)
- Mennesson et al. (2002)
- Perrin et al. (2004)
- Le Bouquin et al. (2009)

Remark: Not fully consistent physical representation of the object, but conversion of observations to image.

The model fitting

- 1D intensity profile
 Hankel transform
- Time-dependent ~sine
- Complementary SAAO J,H,K
 photometry Whitelock et al. (2000)
- Nelder-Mead simplex algorithm
- Monte Carlo: starting values + errors photospin
- Correlation plots + simulations

An example in practice

 $Ø_* = 2.1+-0.6 \text{ mas} / Ø_{lyr} = 4.5+-0.2 \text{ mas} / T_* = 3990+-90 \text{ K} / T_{lyr} = 2190+-60 \text{ K}$

2.0 micron $\tau = 0.9+-0.4$

2.2 micron $\tau = 0.23 + -0.16$

2.4 micron $\tau = 1.00 + -0.24$

Preliminary conclusions and prospects

- Separating star and layer in R Boo successful, but extra constraints necessary (H,J band photometry)
- Work in progress, but very promising science output! Results to be confronted with our current understanding of pulsationally levitated atmospheres.
- Beware for degeneracies!
- The sample?
- The PTI-archive still has secrets to share!

Thank you for your attention! Questions?

"This work has made use of services produced by the NASA Exoplanet Science Institute at the California Institute of Technology."