Interferometric observations of young and evolved stars

F. Cusano^{1,2}, E. W. Guenther¹, A. Hatzes¹, E. Baines³, A. Richichi⁴, C. Paladini⁵, M. Döllinger⁴, B. Aringer⁵

¹Thüringer Landessterwarte Tautenburg
 ²INAF- Osservatorio Astronomico di Capodimonte
 ³Remote Sensing Division, Naval Research Laboratory, Whashington DC
 ⁴ESO-Gaching
 ⁵Institute für Astronomie der Wien Univesität

I.Testing evolutionary tracks of PMS stars:why?

- Masses of PMS stars in star forming regions are determined by using evolutionary tracks
- Different authors use different input physics

 For a star of given luminosity and temperature, different tracks can give different mass values up to 50-60%

The SB canditates

Table 1. Spectroscopic binaries with periods longer than 50 days.

	This survey/	EW Ha	EW LiI	Spec type	m_{K}	RA	Dec	Туре	Period
	region		[Å]1	[Å]	type	[mag]	(2000.0)	(2000.0)	[days]
HIP507962	no/TWA	0.20 ³		K5/WTTS	7.66 ± 0.03	10 22 18.0	-10 32 15	SB1	570
CS Cha	yes / Cha	-40	0.53 ± 0.01	K4/CTTS	8.20 ± 0.03	11 02 26.3	-77 33 36	SB1	≥2482
HD971314	no/TWA			F2	7.70 ± 0.02	11 10 34.2	-30 27 19	ST3	134
RXJ-7539	yes / Cha	fi	0.21 ± 0.06	K2/WTTS	7.93 ± 0.02	12 20 34.4	-75 39 29	SB1	613
MO Lup ⁵	yes / Lup	-2.3	0.37 ±0.02	K7/WTTS	8.64 ± 0.02	15 24 03.5	-32 09 51	ST3	>3000
RXJ1534.1-3916	yes / Lup	abs	0.21 ± 0.02	K1/WTTS	8.55 ± 0.02	15 34 07.4	-39 16 18	SB1	>3000
RXJ1559.2-3814	yes / Lup	-1.4	0.23/0.14	WTTS	9.34 ± 0.03	15 59 16.1	-38 14 42	SB2	474
GSC 06209-007 35	yes/SC	0.3	0.37 ±0.01	K2/WTTS	8.43 ± 0.02	16 08 14.8	-19 08 33	SB1	2045
NTTS160814-18576	no/SC	0.7		K2/WTTS	7.69 ± 0.02	16 11 09.0	-19 04 45	SB1	145
GSC 06213-00306	yes/SC	fi	0.24/0.18	WTTS	7.43 ± 0.02	16 13 18.5	-22 12 48	SB2	167
Haro 1-14c7	no / Oph			K3/WTTS	7.78 ± 0.03	16 31 04.4	-24 04 33	SB2	591
NTTS162819-2423s6	no / Oph	em		G8/WTTS	7.44 ± 0.02	16 31 20.0	-24 30 04	SB1	89
BS Indi ⁸	yes / Tuc	abs	0.18 ± 0.02	KO/WTTS	6.57 ± 0.02	21 20 59.8	-52 28 40	SB1	1222

Guenther et al. 2007

HD113449yes/Abdorabs0.142K05.5113 03 49.7 -05 09 42 SB1216young SB1 system found in the cause
of exoplanet-hunting with HARPS@3.6m
Esposito et al in preparationsin preparationsin preparation

HD113449

d= 21.70 ± 0.40 pc H=5.674 ± 0.038 mag K=5.509 ± 0.023 mag EW(Li λ6708)=0.142 Å

member of AB Dor association SB1 system

Parameter	Value					
P	215.96 ± 0.11 d					
T ₀ [HJD]	2450174.9 ± 0.1					
γ	$-1.98 \pm 0.02 \text{ km s}^{-1}$					
Kı	$13.03 \pm 0.02 \text{ km s}^{-1}$					
e	0.270 ± 0.005					
ω	$117.2 \pm 0.5^{\circ}$					
a ₁ sin i	$0.249\pm0.001~\mathrm{AU}$					
f(m)	$0.0442 \pm 0.0003 \ { m M}_{\odot}$					

HD113449 observed with CRIRES

AMBER observation of HD113449

- Observed the
 21 March 2008
- 6 consecutive exposure (data cube composed of 1000 frame of t=25 ms)
- 3 baseline UT2, UT3 and UT4 (max B=89m)
- Calibration star HD111998

Models

$V^{2} = \frac{1 + f^{2} + 2fcos[2\pi(B_{x}Ra + B_{y}Dec)/\lambda]}{(1+f)^{2}}$

Ra = A(cosE-e) + B(1-e²)^{1/2} sinE Dec= C(cosE-e) + D(1-e²)^{1/2} sinE

M=2π(t_{obs}- т)/Р M=E-esinE

A= $a(\cos\omega\cos\Omega-\sin\omega\sin\Omega\cos)$ B= $a(-\sin\omega\cos\Omega-\cos\omega\sin\Omega\cos)$ C= $a(\cos\omega\sin\Omega+\sin\omega\sin\Omega\cos)$ D= $a(-\sin\omega\cos\Omega+\cos\omega\sin\Omega\cos)$ B_x =projected x baseline B_v=projected y baseline f=flux ratio at λ E=eccentric anomaly M=mean anomaly t_{obs}=jd of observation T=time of periastron P=period e=eccentricity ω =longitude of periastron Ω =longitude of ascendig node *i*=inclination a=semimajor axes

Results

HR diagram of HD113449

Siess $M_1=0.88 M_{\odot}$ $M_2=0.43 M_{\odot}$ coeval t=150Myr

Palla & Stahler $M_1=0.83 M_{\odot}$ $M_2=0.43 M_{\odot}$ not coeval t=50 and 100Myr

Baraffe M_1 =0.93 M_{\odot} M_2 =0.50 M_{\odot} coeval t=100-150Myr

...2 hours ago results

Gennaro, Prada Moroni & Tognelli (see poster n.3)

I.Testing evolutionary tracks of PMS stars: results

- Sample of 13 young binaries suitable for observation with Optical Interferometers
- Dynamical mass of the HD113449 components using HARPS+CRIRES+AMBER
- Baraffe tracks fit better the masses of HD113449 agreement with Hillenbrand & White (2004) for tracks in the range 0.5-1 $\rm M_{\odot}$

II.Testing evolutionary tracks of giant stars:why?

- Same problematic of PMS tracks, the models differ depending on the author
- To study the correlation between mass of the host star and the planet
- Giants offer the possibility to find planet around massive star – 31 planets hosting giant stars known in literature

II.Testing evolutionary tracks of giant stars:methods

- Measure the diameters of a sample of giant stars – 30 giants observed (7 hosting planets) with CHARA array and VLTI
- Time series observations with high resolution spectrographs – primary frequency splitting or/and frequency of maximum amplitude oscillations – ongoing HD170693 started@TLS
- $D+\Delta v \text{ or } D+T_{eff} + v_{max} \longrightarrow Mass$ (Kjeldsen & Bedding 1995)

Interferometric observations

Northen sample: (Baines et al. 2010)

25 giants observed with "CHARA classic" beam combiner@CHARA array

2.15 µm

Southern sample: (Cusano et al. in preparation) 5 giants observed with AMBER@VLTI (ATs)

- 11 spectral channels H band
- 17 spectral channels K band

Interferometric diameters

• Northern sample: Limb-darkened models $V = \left(\frac{1-\mu_{\lambda}}{2} + \frac{\mu_{\lambda}}{3}\right)^{-1} \left[(1-\mu_{\lambda}) \frac{J_{1}(\frac{\pi B\theta}{\lambda})}{\frac{\pi B\theta}{\lambda}} + \mu_{\lambda} \left(\frac{\pi}{2}\right)^{1/2} + \frac{J_{3/2}(\frac{\pi B\theta}{\lambda})}{\left(\frac{\pi B\theta}{\lambda}\right)^{3/2}} \right]$

Baines et al. 2010

Southern sample:
 UD models H & K bands

$$V(\theta) = \frac{2J_1(\frac{\pi B\theta}{\lambda})}{\frac{\pi B\theta}{\lambda}}$$

Cusano et al. in preparation

First test: angular diameters comparison

Salasnich et al. 2001

Claret et al. 2004

Girardi et al. 2000

Temperatures

• Using the diameters is possible to derive the effective temperature through:

Oscillations of the K giant HD170693

Hosts a planet with P=479 days (Döllinger et al. 2009)

25 hours of observations with high resolution echelle spectrograph @ TLS

RADIAL to measure RV (Hatzes et al. 2000)

v_{max}=8.75±0.13 μHz Δv≈1.28 μHz

Mass of HD170693

Comparison with visibility profiles: the case of HD11977

- MARCS model atmospheres Aringer et al. 2009
- Visibility profiles
 Paladini et al. private c.

```
      d = 67.1 \pm 0.7 \text{ pc (van Leeuwen 2007)} \\       T_{eff} = 4975 \text{ K (da Silva et al. 2006)} \qquad \overset{\scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolored{scalescolore{scalescolored{scalescolored{scalescolored{scalescolored{scalescol
```


Discovery of a binary: HD12438

Observed with AMBER 5 nights October-December 2008

 $ρ=6.0\pm1.5$ mas $p.a.=140\pm20^{\circ}$ f ≈ 0.03 $θ_1=1.00\pm0.10$ mas $θ_2< 0.30$ mas

RVs in literature From Setiawan et al. 2004 Döllinger private com. Show a linear trend P >9.5 yrs

II.Testing evolutionary tracks of giant stars: results

- interferometrically diameters of 30 giant stars with precision up to < 1%
- First test with diameters Salasnich et al. tracks fit better the observations
- Difference between $T_{\rm eff}$ spec and $T_{\rm eff}$ interferometric expecially at low temperature
- Mass determination of HD170693 Int+Osc consistent with models
- HD11977: obs vs. profiles gives physical parameters
- Discovery of the binary HD12438

Tschuess Ciao Bye

felix.cat.79@hotmail.it Special thanks: Eike, Artie, Michael, Davide, Bringfried

Eclipsing binaries

- 10 masses so far determined with good accuracy
 - ③: the radii are also measured together with effective temperature ratio
 - ⊗: they are rare; the components are usually very near and they are exchanging mass
- e.g. Stassun et al. (2008) found two "identical twins" (same masses to within 2%) with 300K difference in temperature and 50% difference in luminosity

Disk Kinematics

9 masses measured

Construction of disks measured via mm
 Interferometry in CO lines
 (Simon et al. 2000)

⊗: Low accuracy in the mass determination (~15-20%)

Spectroscopy and Interferometry

Spectroscopical orbital solution combined with high angular resolution observation

 6 masses of PMS determined up to now (Steffen et al. 2001, Boden et al. 2005, Schaefer et al. 2008)

③: Good accuracy; Allows to measure masses of long period (P > 50d) binaries (i.e. not interacting)

Observations spread in more than 1 year

Dynamical masses of PMS

- Eclipsing binaries (P < 10 d)
- Disk kinematics

 Spectroscopy and Interferometry (P >100d)

Our project

Measure dynamical masses of stars in binary systems using S+NIR Interferometry 1° step

Spectroscopic survey on more than 100 young stars to search for binaries **2° step**Determination of the spectroscopic orbit and collection of a sample of 14

Determination of the spectroscopic orbit and collection of a sample of 14 young binaries with period > 50 days

(exchanges of mass avoided) Guenther et al. 2007

Short period binaries are active connected (e.g. RX J1603.8-3938 P~8d same masses but different luminosities, Guenther et al. 2001) **3° step**

Observing the binaries with AMBER@VLTI

What is AMBER? (Astronomical Multi-BEam combineR)

Focal instrument of the VLTI that combines the light coming from two/three UTs/ATs giving spectral dispersed fringes in the J, H and K bands

Basic principles for VLTI interferometry

Young's double-slit experiment

■ V = |V| e^{-iφ} |■|V|= <u>I_{max} - I_{min}</u>

 $I_{max} + I_{min}$

 φ= distance between the maximum of the fringe and the zero OPD (optical path delay)

Van Citter-Zernike theorem

 The Fourier transform of the brighteness distribution of a source in the sky is equal to its complex visibility

From the sky to the UV plane Star diameter (constant disk)

From the sky to the UV plane Circumstellar disk (Gaussian disk)

From the sky to the UV plane Binary

The VLTI stations

- 4 different
- triples
- with UTs and
- 4 with ATs
- available
- last ESO semester for AMBER

minB (E0-G0)=16m maxB (UT1-UT4)=130m

How does AMBER work?

•The light coming from three telescopes is injected in the fiber

•Spatial filtering (phase fluctuation of the wavefront convert in intesity variation)

•Separation in three photometric channels and in one for interference

- •Spectral dispersion (LR, MR and HR)
- Detector

How does AMBER work?

How does AMBER work?

 $\frac{|V^{ij}|^2 = \langle R^{ij2} + I^{ij2} \rangle - Bias\{R^{ij2} + I^{ij2}\}}{V^{ij2}_c - 4\langle P^iP^j \rangle \Sigma_k v^i_k v^j_k}$

 $|V^{ij}|^2$ =squared visibility relative to the ij baseline V^{ij2}_c =visibility of internal calibration source $v^i_k P^i$ =photometric component per pixel k

the measure is weighted by the visibility of the internal source → atmospheric calibration necessary to delete this term

Our project (with today AMBER)

"..... The magnitude limit of AMBER is expected to reach *K=20* when a bright reference star is available and *K=14* otherwhise...."(AMBER consortium web page 2000)

Today :"....On the UTs it is possible to reach **H=7**. On the AT's, the limiting magnitude is H=5..." (ESO web page 2008)

Table 1. Spectroscopic binaries with periods longer than 50 days.

	This survey/	EW Ha	EW LiI	Spec type	m_K	RA	Dec	Туре	Period
	region		[Å]1	[Å]	type	[mag]	(2000.0)	(2000.0)	[days]
HIP50796-	no/TWA	0.20 ³		K5/WTTS	7.66 ± 0.03	10 22 18.0	-10 32 15	SB1	570
CS Cha	yes / Cha	-40	0.53 ± 0.01	K4/CTTS	8.20 ± 0.03	11 02 26.3	-77 33 36	SB1	≥2482
HD971314	no/TWA			F2	7.70 ± 0.02	11 10 34.2	-30 27 19	ST3	134
RXJ-7539	yes / Cha	fi	0.21 ± 0.06	K2/WTTS	7.93 ± 0.02	12 20 34.4	-75 39 29	SB1	613
MO Lup ⁵	yes / Lup	-2.3	0.37 ±0.02	K7/WTTS	8.64 ± 0.02	15 24 03.5	-32 09 5 1	ST3	>3000
RXJ1534.1-3916	yes / Lup	abs	0.21 ± 0.02	K1/WTTS	8.55 ± 0.02	15 34 07.4	-39 16 18	SB1	>3000
RXJ1559.2-3814	yes / Lup	-1.4	0.23/0.14	WTTS	9.34 ± 0.03	15 59 16.1	-38 14 42	SB2	474
GSC 06209-007 35	yes/SC	0.3	0.37 ±0.01	K2/WTTS	8.43 ± 0.02	16 08 14.8	-19 08 33	SB1	2045
NTTS160814-18576	no/SC	0.7		K2/WTTS	7.69 ± 0.02	16 11 09.0	-19 04 45	SB1	145
GSC 06213-00306	yes/SC	fi	0.24/0.18	WTTS	7.43 ± 0.02	16 13 18.5	-22 12 48	SB2	167
Haro 1-14c7	no / Oph			K3/WTTS	7.78 ± 0.03	16 31 04.4	-24 04 33	SB2	591
NTTS162819-2423s6	no / Oph	em		G8/WTTS	7.44 ± 0.02	16 31 20.0	-24 30 04	SB1	89
BS Indi ⁸	yes / Tuc	abs	0.18 ± 0.02	KO/WTTS	6.57 ± 0.02	21 20 59.8	-52 28 40	SB1	1222

Observations history

We got AMBER time in ESO period 76,77,79,80,81,82

Target BS Indi: P76,77: Clouds and/or technical problems P79: observed but too faint

Target HD113449 (next slide):

- P80: observation not done
- P81: one observation done(20-21° March 2008!!)
- P82: two observations should be done

HD113449

d= 22.12 ± 0.62 pc H=5.674 ± 0.038 mag K=5.509 ± 0.023 mag EW(Li ∽∂6708)=0.142 Å

member of AB Dor association SB1 system found in the cause of exoplanet-hunting with HARPS@3.6m in Ia Silla

<u></u>	
element	value
Р	$216 \pm 0.1 d$
7₀ [HJD]	2453411 ± 1
γ	$-1.79 \pm 0.02 \ km \ s^{-1}$
K_1	$13.40 \pm 0.02 \ km s^{-1}$
e	0.300 ± 0.005
ω	$114.6 \pm 0.5^{\circ}$
a1sin i	$0.254 \pm 0.001 \text{ AU}$
f(m)	$0.0467 \pm 0.0006 M_{\odot}$

Table 5. Orbital elements HD113449

HD113449 observed with CRIRES

AMBER observation of HD113449

Models

$V^{2} = \frac{1 + f^{2} + 2fcos[2\pi(B_{x}Ra + B_{y}Dec)/^{2}]}{(1+f)^{2}}$

Ra = A(cosE-e) + B(1-e²)^{1/2} sinE Dec= C(cosE-e) + D(1-e²)^{1/2} sinE

M=2π(t_{obs}- т)/Р M=E-esinE

A= $a(\cos\omega\cos\Omega - \sin\omega\sin\Omega\cos)$ B= $a(-\sin\omega\cos\Omega - \cos\omega\sin\Omega\cos)$ C= $a(\cos\omega\sin\Omega + \sin\omega\sin\Omega\cos)$ D= $a(-\sin\omega\cos\Omega + \cos\omega\sin\Omega\cos)$ B_x =projected x baseline B_v=projected y baseline f=flux ratio at 1 E=eccentric anomaly M=mean anomaly t_{obs}=jd of observation T=time of periastron P=period e=eccentricity ω =longitude of periastron Ω =longitude of ascendig node *i*=inclination a=semimajor axes

Comparison with model

Comparison with model

Results

 M_1 =1.05±0.13 M_{\odot} M_2 =0.60±0.07 M_{\odot}

 $d=a/P^{2/3}(M1+M2)^{1/3}=18.65 \pm 2.04 \text{ pc}$

HD113449 on the HR diagram

PMS binaries with **P** > 100 d

Schaefer et al. 2008 $M_1=0.96^{+0.27}_{-0.08} M_{\odot}$ $M_2=0.33^{+0.09}_{-0.02} M_{\odot}$

Boden et al.2005 $M_1=0.699\pm0.064 M_{\odot}$ $M_2=0.582\pm0.051 M_{\odot}$

Steffen et al. 2001 M_1 =1.45±0.19 M_{x} M_2 =0.81±0.09 M_{x}

Our M₁=1.05±0.13 M_{\odot} M₂=0.60±0.07 M_{\odot}

Conclusions

- Combining spectroscopy and NIR-interferometry we have determined the dynamical masses of two young stars in a binary system $M_1=1.05\pm0.13~M_{\odot}~M_2=0.60\pm0.07~M_{\odot}$
- PMS tracks from three different authors are in disagreement with our estimation
- Our result is consistent with other works on long period PMS binaries
- Models for young stars should be revisited

First test with mass ratios L and T_{eff} determined using spectral synthesis and line ratios

RXJ1559.2-3814 q=0.95±0.03

q_{sie}=0.77 q_{pal}=0.83 q_{bar}=0.93

GSC06213-00306 q=0.97±0.01

 q_{sie} ≈ 1 q_{pal} ≈ 1 q_{bar} ≈1

	As	tronomicalL	Database.	The	parallaxes	are	from	van	Leeuwen	(2007)	
--	----	-------------	-----------	-----	------------	-----	------	-----	---------	--------	--

id	V (mag)	K (mag)	Spec. Type	π (mas)	$\theta_{\rm UD}$ (mas)	θ_{LD} (mas)	$R_{\text{linear}} \; (R_{\odot})$	$L(L_{\odot})$	T_{eff}
HD32518	6.41	3.91 ± 0.04	K1 III	8.29 ± 0.58	0.828 ± 0.022	0.851 ± 0.022	11.04 ± 0.77	46.0 ± 2.7	4524 ± 98
HD60294	5.92	3.55 ± 0.22	K2 III	12.24 ± 0.39	1.014 ± 0.010	1.044 ± 0.010	9.17 ± 0.29	32.5 ± 1.6	4552 ± 63
HD73108	4.60	1.92 ± 0.07	K1 III	12.74 ± 0.26	2.161 ± 0.019	2.225 ± 0.020	18.79 ± 0.38	111.1 ± 7.9	4324 ± 80
HD102328	5.29	2.55 ± 0.06	K3 III	15.13 ± 0.30	1.546 ± 0.006	1.606 ± 0.006	11.42 ± 0.23	42.7 ± 3.2	4367 ± 82
HD103605	5.84	3.10 ± 0.30	К1 ПІ	10.54 ± 0.37	1.066 ± 0.009	1.098 ± 0.010	11.20 ± 0.41	52.8 ± 3.9	4647 ± 91
HD106574	5.71	2.94 ± 0.08	K2 III	7.00 ± 0.28	1.458 ± 0.027	1.498 ± 0.028	23.02 ± 0.92	134.7 ± 10	4099 ± 88
HD113049	6.00	3.66 ± 0.31	ко пі	6.02 ± 0.37	0.945 ± 0.021	0.971 ± 0.022	17.35 ± 1.07	119.5 ± 5.9	4581 ± 85
HD118904	5.51	2.69 ± 0.07	$K2 \Pi I$	7.93 ± 0.24	1.842 ± 0.031	1.871 ± 0.031	25.38 ± 0.88	135.3 ± 11.5	3908 ± 91
HD136726	5.01	1.92 ± 0.05	К4 ПІ	8.19 ± 0.19	2.264 ± 0.020	2.293 ± 0.020	30.12 ± 0.70	229.2 ± 23.3	4093 ± 106
HD137443	5.79	2.74 ± 0.06	K4 III	8.86 ± 0.22	1.638 ± 0.030	1.690 ± 0.031	20.51 ± 0.62	96.0 ± 9.5	3989 ± 106
HD138265	5.88	2.38 ± 0.04	К5 ПІ	5.11 ± 0.31	1.998 ± 0.037	2.062 ± 0.038	43.40 ± 2.75	338.5 ± 47.5	3758 ± 139
HD139357	5.97	3.41 ± 0.32	К4 ПІ	8.47 ± 0.30	1.040 ± 0.012	1.073 ± 0.013	13.63 ± 0.51	72.8 ± 4.0	4567 ± 72
HD150010	6.28	3.18 ± 0.38	К2 ПІ	6.95 ± 0.43	0.995 ± 0.028	1.024 ± 0.029	15.84 ± 1.08	98.7 ± 10.0	4570 ± 136
HD152812	6.00	2.83 ± 0.09	K2 III	4.97 ± 0.45	1.393 ± 0.003	1.440 ± 0.004	31.16 ± 2.82	260.3 ± 25.6	4153 ± 113
HD157681	5.67	2.19 ± 0.05	K5 III	5.23 ± 0.27	1.600 ± 0.009	1.664 ± 0.010	34.22 ± 1.78	384.9 ± 54.0	4371 ± 156
HD160290	5.36	2.67 ± 0.07	K1 III	9.23 ± 0.12	1.467 ± 0.010	1.515 ± 0.010	17.65 ± 0.42	113.9 ± 8.0	4487 ± 81
HD167042	5.98	3.44 ± 0.24	К1 ШІ	19.91 ± 0.26	0.898 ± 0.017	0.922 ± 0.018	4.98 ± 0.07	11.7 ± 0.6	4782 ± 81
HD170693	4.83	1.95 ± 0.05	K1.5 III	10.36 ± 0.20	1.981 ± 0.041	2.041 ± 0.043	21.19 ± 0.60	144.7 ± 11.4	4349 ± 98
HD175823	6.22	3.57 ± 0.32	К5 Ш	5.63 ± 0.28	0.958 ± 0.022	0.988 ± 0.023	18.88 ± 1.04	132.2 ± 9.3	4505 ± 99
HD176408	5.66	3.00 ± 0.27	К1 ПІ	11.81 ± 0.27	1.092 ± 0.022	1.125 ± 0.023	10.24 ± 0.23	48.3 ± 3.4	4735 ± 97
HD186815	6.28	4.32 ± 0.25	K2 III	12.86 ± 0.39	0.713 ± 0.020	0.731 ± 0.020	6.11 ± 0.25	18.0 ± 0.5	4809 ± 76
HD192781	5.79	2.33 ± 0.07	K5 III	5.62 ± 0.23	1.787 ± 0.002	1.859 ± 0.003	35.57 ± 1.46	394.6 ± 33.5	4313 ± 94
HD195820	6.18	3.90 ± 0.22	K0 III	8.68 ± 0.29	0.840 ± 0.040	0.863 ± 0.041	10.69 ± 0.62	50.3 ± 2.3	4700 ± 125
HD200205	5.51	2.25 ± 0.06	K4 III	5.30 ± 0.24	1.963 ± 0.043	2.032 ± 0.045	41.23 ± 2.08	519.3 ± 36.4	4291 ± 92
HD214868	4.48	1.41 ± 0.07	K2 III	9.08 ± 0.26	2.721 ± 0.020	2.731 ± 0.024	29.98 ± 0.84	283.6 ± 27.9	4327 ± 109

id	V (mag)	K (mag)	Spec. Type	π	$\theta_{\rm H}~({ m mas})$	$\theta_{ m K}~(m mas)$	$R_{linear}(R_{\odot})$	$L(L_{\odot})$	T_{eff}
HD11977	4.70	2.590 ± 0.240	GS.5 III	14.91 ± 0.16	1.579 ± 0.013	1.573 ± 0.015	11.37 ± 0.12	64.5 ± 2.3	4855 ± 84
HD12438	5.35	3.218 ± 0.298	G5 III	11.08 ± 0.29	1.100 ± 0.050	1.150 ± 0.050	10.68 ± 0.28	58.5 ± 6.1	5005 ± 150
HD 23319	4.60	2.639 ± 0.274	K2.5 III	17.70 ± 0.22	1.962 ± 0.009	1.929 ± 0.019	11.82 ± 0.15	51.4 ± 5.5	4498 ± 126
HD 27256	3.34	1.439 ± 0.312	GS II-III	20.18 ± 0.10	2.563 ± 0.010	2.559 ± 0.002	13.64 ± 0.07	103.0 ± 5.9	4981 ± 78
HD 36848	5.46	2.804 ± 0.268	K2 III	18.93 ± 0.23	1.369 ± 0.017	1.369 ± 0.025	7.77 ± 0.09	17.8 ± 1.0	4280 ± 86

Table 9.1: Diameters measured with AMBER for the 5 giants. Note that for HD12438 is given the angular diameter obtained by fitting the model of a resolved binary as explained in the text. The V magnitude and the spectral types are from SIMBAD. The K magnitude are from 2MASS. The parallaxes are from van Leeuwen (2007).

• da Silva et al 2006

