

Post-main sequence evolution of debris discs Amy Bonsor Collaborators: Dr. Mark Wyatt

Institute of Astronomy
University of Cambridge

Observations of dusty discs

Models to evolve debris discs from main sequence to white dwarf phase Bonsor, Wyatt et al 2010 (in prep)

Debris discs around white dwarfs and giant stars

Discs on the Main Sequence

There are lots of observations....

Discs around giant stars

G & K giants observed with IRAS @ 60μm:

3-14 % (Jura et al 1990, Plets et all 1999)

These could be:

- dusty discs, like MS debris discs
- cirrus hot spots
- sporadic mass loss

Helix Nebula: a young white dwarf, surrounded by a planetary nebula.

Infrared excess of

Infrared excess observed with Spitzer at 24 and 70um,

an upper limit at 160um

A dusty disc similar to MS debris discs?

Su et al 2007

Hot, dusty discs around white dwarfs

e.g Farihi et al 2009, von Hippel et al 2007, etc.....

Radii ~ Rsolar

Tidally disrupted asteroids or comets

Population of debris discs on the main sequence

Constrain population of debris discs

around main sequence A stars using the steady state

collisional models of Wyatt et al 2007 and

Spitzer observations at 24um and 70um.

Population of debris discs around main sequence A stars

Wyatt et al 2007

Stellar evolution

Hurley et al 2000

Population of debris discs around evolved stars

Provide a theoretical framework that investigates all of the processes affecting a disc during its evolution

Collisional Evolution

Diameter

Largest object present several km

Collisional Evolution

Diameter

Largest object present several km

Small bodies removed by?

Process	When is it important?
Radiation pressure	throughout evolution
Poynting-Robertson drag	X
Stellar wind pressure	X
Stellar wind drag	AGB
Sublimation	RG and AGB?

ioa

Effect of radiation pressure blow-out

Disc radius evolution

Disc radii increase around white dwarfs

Disc flux (Jy) at 70um

Disc luminosity

Initial radius: 100AU

Initial mass 30M_a

Star: 2.9 M₀

Distance: 10pc

Spitzer at 70um

Time (Myr)

To detect a disc we require:

Disc is bright:

Disc flux > Sensitivity

Disc is brighter than star:

Disc flux > Calibration limit Stellar flux

When are discs detectable?

Disc flux (Jy)

Ratio of disc

Initial radius: 100AU Initial mass: 30M_•

Star: 2.9 M_o

Distance: 10pc

Spitzer at 70um

When are discs detectable?

Around hot, young, nearby white dwarfs

Around giant branch stars

Dust around young white dwarfs

- there is expected to be one WD with t< tcool
- Max. distance at which a disc around a $0.5 \, \mathrm{M}_{\odot}$ WD with a disc mass of $10^2 \, \mathrm{M}_{\oplus}$ and a disc radius of $100 \, \mathrm{AU}$ is detectable with Spitzer at $70 \, \mathrm{um}$.

Optimum age for detection ~ 1Myr @ ~200pc

Helix Nebula

Explaining the hot, dusty white dwarf discs

Radii ~ R_o rather than 10AU smallest disc in popⁿ evolved

from MS

Disc material spirals inwards due to stellar wind drag such that a significant proportion of the disc mass is found inside of the belt at the end of the AGB.

Detecting discs around giants

Percentage of population of discs observed around MS A stars Wyatt et al 2007 with detectable excess, within 150pc

Spitzer at 70um 24%

Herschel PACs at 70um 25%

Herschel PACS at 160um 21%

But we havn't included sublimation...

Sublimation could:

- decrease no. of detectable discs by sublimating all small grains
- increase no. of detectable discs by releasing a population of small silicate grains, as in the models of Jura 90(?)

Future observations of giant stars could constrain

the effects of sublimation on debris discs

Also...

- Detailed modelling required to determine if observed excess results from debris discs rather than cirrus hot spots or stars undergoing mass loss
- Include population of debris discs around FGK stars
- Include large radii discs

Conclusions

- Bonsor, Wyatt et al 2010 (in prep)
 Models to investigate the effects of stellar evolution on debris discs and to find the population of discs around evolved stars.
- Debris discs are detectable around young white dwarfs, but these are rare close to the sun- fits with observation of disc around the helix nebula
- Stellar wind drag provides a plausible reservoir of material to explain hot white dwarf discs
- Future observations of discs around giant stars could constrain the effects of sublimation on the disc