

Model atmospheres with synthetic spectra: *standard tools for analysis of stellar spectra*

 Basic assumptions: 1D, HE, LTE, MLT 3D, (M)HD, SE

Cf: BG, IAU 265

Nordlund, Stein, Asplund, Collet, Freytag, Ludwig, Steffen, Vögler 3D HD

SE (non-LTE)

- For individual atoms in given model atm: 2000-2010:
 > 20 elements studied for solar-type stars
- Collision-rates improving
- Full SE model atmospheres: Anderson (1989), Hauschildt & Short (2005, ...)
 Fe I 494 levels 6903 lines

24 elements in SE 6 ion. stages 464 states, 6903 Fe I lines 617 / 13 600 Fe II 1 600 / 35 000 Ti+Mn+Co+Ni 0% 5% Phend Doft Frido Kolini Huminis ip Apd Doft Frido Kolini Hum

Consistent 3D + HD + SE

• Still missing!

Consistent 3D + HD + SE

• Still missing!

But probably needed.

Checks of 3D and SE needed for stars!

(Cf work on Sun by Asplund, Allende-Prieto, Dravins, Kiselman, Koesterke, Nordlund, Pereira, Stein,)

Model atmospheres with synthetic spectra: standard tools for analysis of stellar spectra

Basic assumptions: 1D, HE, LTE, MLT
 3D, (M)HD, SE

Dramatical improvements:

- basic consistency
- error control
- accuracy (?)

(limitations: physical data, observations,

resolution in models, remaining simplifications)

Observations Model atmospheres

Main results

- T_{eff} , log g, (M, L, R), $\{A_i\}_{i=1,N}$
- V_{atm} , V_{rot} sin i, $V(\phi)$
- <<u>B</u>>
- Surface distribution of T, A_i, <u>B</u>, ...

To which extent do these constrain models of stellar evolution? How accurate are they? What can they be used for?

Spectral diagnostics

- T_{eff} , solar type stars: $\varepsilon \sim 100 \text{ K}$ (cf. Casagrande et al. 2010)
- red giants: 100 200 K
- **log g**, solar-type stars: $\varepsilon \sim 0.05$ (Fuhrmann 2004), red giants ~0.2
- Cf. Asteroseismology (CoRoT, Kepler)

 ε(**R**) ~ 3%, ε(**M**) ~ 5%
 => ε (log g) ~ 0.03 dex!

 see Kallinger et al. (2009)

 Stello et al. (2009)

Chemical composition

- log A_i ; Errors ~ 0.1 dex (sun, solar-type stars)
- [X/Fe] ~ 0.1 dex, RGB: 0.1 0.2 AGB: 0.2 - 0.4

Possibilities to decrease errors:

- Improved obs. data (R, S/N, Spectral range)
- Improved phys. data (ident, gf, D_e , { σ_i }, ...)
- Improved model atm.
- Differential analysis

Ex. 1. Was the proto-Sun completely mixed?

 Melendez et al. (2009): Sun vs 11 solar twins ε [X/Fe] ~ 0.01
 Sun dust-depleted

Disk only prevails ~ 10 Myr, but conv. zone deep until ~ 30 Myr (stand. models). However, Wurchtel, Klessen, Tscharnuter (2002, 2003) suggest Sun was never fully convective!

Ex. 2. Magnetic-field distribution on T Tauri stars

- V2129 Oph, BP Tau (Donati et al. 2207, 2008), mapped fields
- Piskunov et al. (in prep): TW Hya, V=11.1, ESO 3.6m + HARPS
 v sin i = 6 km/s

For Sun, at maximum: 2 gauss.

Cf. Donati & Landstreet (Ann. Rev. A&A 2009)

e.g. τ Boo (F7), polarity switches 2x in two year

Ex. 3: "Diffusion" in solar-type stars

• Korn et al. (2006), Lind et al. (2008): NGC 6397, [Fe/H] ~ -2

Ex. 4. 1:st dredge up

TABLE 3 ¹²C/¹³C Ratios

Also interacts with *rotational mixing*!

2

000

o 😵

 $Log (L/L_{o})$

- bump

3

0,000 000 00

Mass	X = 0.70, FDU	Z = 0.02 Final	X = 0.738, FDU	Z = 0.001 Final	X = 0.74, FDU	Z = 0.0004 Final
0.80	36.9	15.9	34.1	5.3	35.0	4.2
0.85	34.0	15.3	31.5	5.0	31.8	4.0
0.90	32.2	14.5	29.6	4.9	30.0	4.0
1.00	29.5	13.4	27.3	4.9	27.4	4.0
1.25	25.6	13.0	24.3	5.0	24.3	4.1
1.50	23.6	13.7	24.3	5.2	22.7	4.6
2.00	22.3	17.0	21.2	14.2	21.0	21.0

Ex. 6. Mass loss at He-core flash

Massloss? $\Delta M \sim 0.2 M_{sun}$ (Lee et al. 1994, Caloi & D'Antona 2008)

- Spectrocopically (log g) very difficult
- Asteroseismology -- possible

Mixing?

- Early R-type stars, at clump, C enriched, no s-enrichment
- Zamora et al. (2009): Errors in [X/Fe] 0.2-0.5 dex

Ex. 7. 3:rd dredge up on AGB

Satisfactorily consistent picture. C increasing, s elements produced, for low mass stars by ${}^{13}C(\alpha,n){}^{16}O$. Still considerable errors. IR+better line lists. Also problems (e.g. CH) Note testing of reaction rates, $3\alpha, {}^{12}C(\alpha,\gamma){}^{16}O$, ...

F in N stars (Abia et al. 2009)

Are present N-star model atmospheres realistic enough?

- Non-LTE, 3D, convection, magnetic fields?
- Extended -- by turbulence and pulsations
- Seriously affected by dust

"V-R CH problem" of Lambert et al. 1986!

See talks by Höfner and Ramstedt!

Ex. 8. R CrB stars and H-deficient C stars

• Asplund et al. (2000): abundances for 18 stars.

Double Degenerate or Final Flash?

"C problem"

CI lines vs CI continuum x4!

Ex. 8. R CrB stars and H-deficient C stars

• Asplund et al. (2000): abundances for 18 stars.

Double Degenerate or Final Flash

"C problem" Cl lines vs Cl continuum x4!

But: ¹⁸O/¹⁶O very high!! (Clayton et al. 2006 ...) and A(F) very high (Pandey et al. (2006 ...)

Sakurai and FG Sge may be FF (cf poster by Herwig et al.)

• Model-atmosphere errors limit quantitative checks of stellar evolution

- Model-atmosphere errors limit quantitative checks of stellar evolution
- Improvements developing -- basic data, consistency, resolution

- Model-atmosphere errors limit quantitative checks of stellar evolution
- Improvements developing -- basic data, consistency, resolution
- Support them!
- Verify (or disprove!) advanced models observationally!

- Model-atmosphere errors limit quantitative checks of stellar evolution
- Improvements developing -- basic data, consistency, resolution
- Support them!
- Verify (or disprove!) advanced models observationally!
- Work strictly differentially when possible!

- Model-atmosphere errors limit quantitative checks of stellar evolution
- Improvements developing -- basic data, consistency, resolution
- Support them!
- Verify (or disprove!) advanced models observationally!
- Work strictly differentially when possible!
- For solar evolution -- open clusters!

- Model-atmosphere errors limit quantitative checks of stellar evolution
- Improvements developing -- basic data, consistency, resolution
- Support them!
- Verify (or disprove!) advanced models observationally!
- Work strictly differentially when possible!
- For solar evolution -- open clusters!
- Seismology + GAIA will give great solar-mass sample

- Model-atmosphere errors limit quantitative checks of stellar evolution
- Improvements developing -- basic data, consistency, resolution
- Support them!
- Verify (or disprove!) advanced models observationally!
- Work strictly differentially when possible!
- For solar evolution -- open clusters!
- Seismology + GAIA will give great solar-mass sample
- B-fields, differential rotation, doppler imaging, interferometry, will be needed for checks of models

- Model-atmosphere errors limit quantitative checks of stellar evolution
- Improvements developing -- basic data, consistency, resolution
- Support them!
- Verify (or disprove!) advanced models observationally!
- Work strictly differentially when possible!
- For solar evolution -- open clusters!
- Seismology + GAIA will give great solar-mass sample
- B-fields, differential rotation, doppler imaging, interferometry, will be needed for checks of models
- Solar history and future will give much more input into geophysics, climatology and planetology

- Model-atmosphere errors limit quantitative checks of stellar evolution
- Improvements developing -- basic data, consistency, resolution
- Support them!
- Verify (or disprove!) advanced models observationally!
- Work strictly differentially when possible!
- For solar evolution -- open clusters!
- Seismology + GAIA will give great solar-mass sample
- B-fields, differential rotation, doppler imaging, interferometry, will be needed for checks of models
- Solar history and future will give much more input into geophysics, climatology and planetology
- Our field has a great, and more significantly, *important* future!

