Max Planck Institute for Astrophysics

INTERPRETATION OF INTERFEROMETRIC OBSERVATIONS WITH 3D RADIATIVE HYDRODYNAMICS SIMULATIONS OF COOL STARS

Andrea Chiavassa

MPA

ESO workshop – 3 March 2010

Modelling
Red supergiant stars
Giant stars
Conclusions

× Modelling

×

WHY STUDY THE ATMOSPHERE OF COOL STARS?

- The atmosphere is the boundary to the invisible stellar interior: link between models of stars and stellar evolution and observations. Study of chemical composition due to dredge-up process and fundamental stellar parameters.
- The atmosphere is the inner boundary to the outer atmospheric region: effects on the interstellar medium, throughout radiation or mass loss. Contribution to the chemical evolution of the Galaxy.

The modeller's point of view

Velocity at 1.6 micron computed with OPTIM3D

CO⁵BOLD (Freytag et al. 2002)

STAR-IN-A-BOX setup:

• Used to model RSG stars

Sun at 6700Å computed • with OPTIM3D

STAGGER CODE (Nordlund et al. 2009)

BOX-IN-A-STAR setup:

• Used to model Giant, Dwarf stars and the Sun

3D RADIATIVE TRANSFER CODE OPTIM3D

 Opacity tables generated with MARCS with billion of molecular (see Gustafsson et al., 2008) and atomic (VALD) lines

×

×Red supergiant stars

- ×
- ×

INTENSITY PROFILES – EASY AND COMPLEX MODELS

RSG simulation

r

INTENSITY PROFILES – EASY AND COMPLEX MODELS

Clear deviations from spherical symmetry. Maximum deviations up to 10% with respect to average value

INPUT: 2D simulation images

VISIBILITY – FIRST LOBE

VISIBILITY - THE SECOND, THIRD AND FOURTH LOBES

- Clear deviation
 from circular
 symmetry. Signal
 higher than UD or
 LD predictions!!!
- Scatter becomes
 larger with spatial
 frequencies
- Signature of the convective cells

IONIC filer H band

AND A LOOK IN THE H BAND... Very good fits from the optical to the H-K

band!! Convection cells on Betelgeuse

IONIC H band (Haubois et al. 2009, red)

AND A LOOK IN THE H BAND... Very good fits from the optical to the H-K

 $\nu > 30 \text{ arcsec}^{-1}$ 20 1.0000 10 0.0984 Squared visibility y [mas] 0.0097 0 0.0010 -100.0001 40 20 60 80 0 100 Spatial Frequency [cycles/arcsec] -20**Need: real images!!!** -20-1010 20 0 x [mas] Chiavassa, Haubois, Young. et al., http://arxiv.org/abs/1003.1407

× ×Giant stars

×

×

Metal poor 0.8 M_{\odot}, 23 R_{\odot}, log(g)=1.6, Teff \cong 4600K, [Fe/H]=-3.0 (Collet et al. 2010, in preparation)

Solar metallicity 0.8 M_☉, 12.9 R_☉, log(g)=2.2, Teff ≅ 4700K, [Fe/H]=0.0 (Collet et al. 2007)

(Chiavassa, Collet et al. 2010, in preparation)

Solar metallicity giant

Metal poor giant

Intensity maps range: [4000,120000] erg/s/cm²/Å

(Chiavassa, Collet et al. 2010, in preparation)

Solar metallicity giant

Metal poor giant

Intensity maps range: [4000,1.5×10⁶]erg/s/cm²/Å

VISIBILITIES FOR METAL POOR GIANT

Synthetic visibilities (grey) Average visibility(black)

 $v[arcsec^{-1}]=v[R_{\odot}^{-1}] \times d[pc] \times 214.9$

× Clear deviation from circular symmetry

(Chiavassa, Collet et al. 2010, in preparation)

LIMB DARKENING FIT

(Chiavassa, Collet et al. 2010, in preparation)

Average profile (solid black line) 1 sigma fluctuations (dotted line)

LIMB DARKENING FIT

(Chiavassa, Collet et al. 2010, in preparation)

Solar metallicity giant

×

×

CONCLUSIONS

- Convection-related surface structures cause visibility/ phase fluctuations that:
- 1. Add uncertainty on radius measurement (RSG)
- 2. Clearly deviate from circular symmetry at high frequency: size distribution
- Predicitons for giant stars at different metallicity
- Synergy between observation and modelisation: both in terms of verifying the simulations, and understanding the observations.

3D MODELS TO BE USED

Red Supergiants (Freytag et al. 2002; Chiavassa & Freytag 2010, in prep.) AGB (Freytag & Hoefner 2008)

See applications in Chiavassa, Lacour, Millour et al. 2010, A&A in press Red Giant Branch

THANK YOU

