The Gaia mission

F. Thévenin Observatoire de la Côte d'Azur

■ A successful forerunner: HIPPARCOS (ESA) accuracy of 1 mas ~ a coin @ 1000 km accuracy of 0.1 mas ~ a nail @ 1000 km Roemer, FAME-1, FAME-2, DIVA, Lomonossov, AMEX ESA US US DE RU US

- Study phase
 - JASMINE (Japan) in the IR
- Delayed > 2015
 - SIM-lite (US) with 1 µas accuracy

Space Astrometry: Past & Present

- Funded launch 2012 2013
 - NanoJasmine [4 mas], J-MAPS (US) [1mas]
 - Gaia (ESA) : 25 μ as (a hairwidth @ 1000 km)

The unfortunate followers

Astrometry for Astrophysique

Immediat and direct product

- Positions, parallaxes & proper motions for a large sample of stars
 - 1 mas (Hipparcos) to 1 µas (SIM)
- Photometry multi-epoch from UV to near IR
- Radial velocity with few km/s of accuracy
- Solar System Object Studies
- Detection, measures of visual & spectroscopiques binaries

Secondary product: Stellar Physics & galactique structure

Assets of Gaia

- A single mission with three nearly synchronous data taking
 - by 3 instruments: astro, BP/RP and RVS
 - Astrometric, photometric and spectroscopic data
- GAIA is a scanning mission
 - no pointing, no change in the schedule Uniform coverage of the sky
- Quasi regular time sampling over 5 years
 - ~ 80 observations > photometry, orbits of binaries, asteroids
- Internal and autonomous detection system to G = 20
- Global astrometry of staggering precision
 - Internal metrology, thermal and mechanical stability

The expected astrometric accuracies

Sky-averaged standard errors for GOV stars (single stars, no extinction)

V magnitude	6 - 13	14	15	16	17	18	19	20	mag
Parallax	7-8	13	24	34	55	90	155	300	μας
Proper motion	5	7	11	18	30	50	80	145	µas/an
Position	6	10	16	25	40	70	115	205	μας

Notes:

- Radiation-damage effects on CCDs not fully taken into account
- Estimates include a 20% margin (factor 1.2) for unmodelled errors

Photometric performance (no radiation dammage)

'hotometric band /		B1V	G1V	M6V	
C1 M 2 A A	15	< 10 mmag	< 15 mmag	< 100 mmag	
C1M344	20	< 150 mmag	< 1000 mmag	_	
C1M410	15	< 10 mmag	< 10 mmag	< 20 mmag	
	20	< 60 mmag	< 200 mmag	< 1100 mmag	
	15	< 8 mmag	< 8 mmag	< 8 mmag	
C1M549	20	< 120 mmag	< 120 mmag	< 120 mmag	
	15	< 20 mmag	< 10 mmag	< 10 mmag	
C1M965	20	< 400 mmag	< 150 mmag	< 10 mmag	

... and for the G-band photometry (no radiation damage)

Radial velocity accuracy

Gaia Real Science: very broad coverage

- The real science return for the DPAC scientists sounds more like
 - Mapping of the Milky-way
 - Stellar physics (classification, M, L, Ln g, T_{eff}, [Fe/H], variability)
 - Galactic kinematics and dynamics
 - Distance scale (geometric to 10 kpc, HR diagram, cepheids, RR Lyr)
 - Age of the Universe (cluster diagrams, distances, luminosity)
 - Dark matter (potential tracers)
 - Reference frame (Quasars, astrometry)
 - Planet detection (~ M_{J_i} astrometry and photometric transits)
 - Fundamental physics (Relativity experiments, $\gamma \sim 2 \times 10^{-6}$, $\beta \sim 5 \times 10^{-4}$)
 - Solar Physics (J2 $_{sun} \sim 5 \times 10^{-7}$)
 - Solar system science (Taxonomy, Masses, Orbits, 3x10⁵ bodies)

Gaia

The Gaia machine

in few pictures

Soyouz Launchpad near Kuru

Launch August 2012

Orbite au point L2

Main characteristics

- S/C masse at launch : 2 t
- Power available : 2 kW
- Size : 3 m
- Shield diameter : ø = 10 m
- bubil of telescopes :1.45 x 0.5 m
 bubil of telescopes :1.45 x 0.5 m

Schield of 10m Ø

Gaia : telescopes and detector

BP/RP & RVS Instruments in the P/L

Sky coverage

Gaia DPAC

Spectrophotometer

- Two photometers with dispersed images
 - \bullet R ~ 50 with time delay mode integration

2 prisms: blue & red gives a covarage of 330 -1100 nm Pixels varying from ~3 to 30 nm

RP spectrum of M dwarf (V=17.3) Red box: data sent to ground White contour: sky-background level Colour coding: signal intensity

Very low dispersion

Figures courtesy Anthony Brown

A prism-grating system in the band 849 - 875 nm R~11500

Choiced because CaT and Paschen lines for Vr and DIB

Problem: hard region to simulate for astrophysical studies

Primary goal Vr & Vsini (expected V=16)

If some problems can be calibrated: some detailed abundances

'Hard stuff ' already manufactured

Gaia: Brased torus in place (SiC like the mirrors)

Gaia in construction

Service Module structure

Testing CCD acquisition mode

EADS Astrium

Data Processing Organization

The DPAC

ESA & DPAC Responsibilities

DPAC active members 2009

- 28 8 28 99 64 31 01 ESAC: 18 - Brazil: 3 - Canada: 2 - United States: 2
- 430 members
- 22 Funding agencies

The DPAC in the mission overall chart

DPC: Data Processing Centre

We need the help of ground based telescopes for calibrations

In particular in the ecliptique poles and for ~500 stellar calibrators

The effort will be on a long time but

it is mandatory for Gaia and the Astronomy

Science with Gaia

Stellar physics: HR diagram

- Accurate distances across the HR diagram
 - luminosity calibration
 - calibration photometric and spectroscopic distance indicators
 - tests of stellar interior models and stellar evolution: convection & rotation
 - initial mass function, census of multiplicity
 - fundamental parameters for rare stellar types
 - astrometric detection of stellar, sub-stellar and planetary companions
 - 3-D mapping of interstellar extinction

Masses and Ages of single stars and clusters

- Will give a relation between Age & Fe/H
- Astrometric and spectrographic binaries will offer an opportunity to have precise ages for about 5000 binaries

Need ground based observations in complement for the best objects

Stellar physics: Variable stars

- 90% of variable stars V< 12 not yet identified (Paczynski, 2000)</p>
- Currently Hipparcos remains the largest all-sky survey
 - + 10% of the Catalogue , amplitude > 0.02 mag
- Other GB surveys are under-way (Pan Starrs, LSST, OGLE)
 - \bullet deeper than Hipparcos but not 4π coverage
- Objective for Gaia
 - ~ 80 epoch survey over 5 years
 - mmag accuracy of single observation
- Qantitative impact
 - 20x10⁶ classical variables
 - 1 5 million eclipsing binaries
 - ~ 5000 cepheids, 70,000 RR Lyr
 - 6,000 SNe Ia to G =19

Cepheids with Gaia: impact on the physics of these stars and on the masses of the Cepheids.

- 15 d < 0.5 kpc, 65 d< 1 kpc, 165 d < 2 kpc
 - bright enough (V < 14)</p>
- In the plot : 400 galactic cepheids from David Dunlap DB

Small stellar systems

- Power of Gaia
 - Survey mode, sensitivity to non linear motion
 - ~ regular time sampling over 5 yrs
 - Large range of separations and dm
 - Spectroscopic measurements
- Expected results
 - Detection of various categories of binaries
 - 10⁷ resolved within 250 pc (long period)
 - 10⁷ astrometric binaries
 - 10⁶⁻⁷ eclipsing binaries, 10⁶ spectro
 - 50% complete census to 250 pc
 - masses to 1% for 10⁴ stars
 - constraints on evolutionary models

Spectroscopic survey with the RVS

Stellar and interstellar parameters (conservative estimates)

 Radial velocities 	V ≤ 17.0	~ 150×10 ⁶ *
 Rotational velocities 	V <u>≤</u> 13	~ 5×10 ⁶
 Atmospheric parameters. 	V <u>≤</u> 13	~ 5×10 ⁶
 Abundances 	V <u>≤</u> 12	~ 2×10 ⁶
 Interstellar reddening 	V≤13	~ 5×10 ⁶

Diagnostics

- Binarity/multiplicity, variability
- ~ 10⁶ spectroscopic binaries
- ~ 10⁵ eclipsing binaries (~25% SB 2 \rightarrow masses)
- + Long period classical cepheids $\sigma_{\rm vr}$ < 7 km/s \rightarrow 20-30 kpc

Performances AP: BP/RP

	T_{eff}	Ag	log g	[M/H]	[α/Fe]
G<16	<5%	0.05-0.2	0.2-0.3	0.2-0.4	0.2
G=18	5-15%	0.05-0.3	0.2-0.5	0.5-0.7	?

Ranges in errors reflect the influence of the spectral type, metallicity

dwarfs, G = 15, T < 7000 K, [Fe/H] > -2

C. Bailer-Jones, GAIA-C8-TN-MPIA-CBJ-043

Galactic physics

- First survey providing 6D phase space (r, v)
- Photometry for very large magnitude-limited samples of stars
 - Distances + magnitudes & colours + kinematics
 - spatially and kinematically resolved distributions (luminosity, age, metallicity)
 - history of star formation
 - chemical enrichment history
 - Number density and kinematics of tracer stars
 - refined galactic rotation model
 - mapping the galactic potential
 - distribution of (dark) matter
 - disk dynamics (bar, spirals)
 - Phase space (or E, Lz) structures in halo
 - history of galactic mergers
- Colour/mag diagrams for dwarf galaxies in the local group
 - astrometry and photometry of individuals stars

Galactic physics

Aquarius project

• which stars form and where?

- mass distribution throughout Galaxy?
- spiral structure?
- mass cycling?
- how universal is initial mass function?
- impact of metal-free stars on Galaxy evolution?
- merging history?
- Galaxy consistent with $\Lambda CDM?$

Galaxy and local group: Gaia's impact

- First survey providing 6D phase space (r, v)
 - all-sky and large-volume coverage
 - accurate and robust spatial/kinematic separation of structural components
 - phase-space mapping (E, Lz, J, etc)
 - detailed properties of bulge, thin/thick disk, halo (substructure), spiral arms

Bullock & Johnston 2005

Galaxy and local group: Gaia's impact

Accurate mapping of HR-diagram

- accurate luminosities
- improved stellar structure and atmosphere models
- age and chemical composition
 determinations
- detailed characterization of stellar populations
- star formation history and chemical evolution

For more details on the impact of Gaia on the past history of the galaxy see papers by A. Helmi

Galaxy and local group: Gaia's impact

Astrometry/photometry for
 individual stars in local group
 dwarf galaxies

■ G=20 corresponds to V=20-22

48

Solar system

- Objects observed,
 - 6< V <20, size <200 mas
- ~70 observations / object
 - < 1mas accuracy for individual transits</p>
- Astrometry and photometry for:
 - 3x10⁵ Main Belt & Near Earth Asteroids
 - 50,000 new objects expected
 - Jupiter Trojans
 - Comets and TNOs
 - small planetary satellites
- Spectroscopic properties
 - limited to bright end (V<13)

Solar system at time of Gaia launch, F. Mignard 2009

Solar System Science: final products

Gaia Solar System Astrometry

ground-based 0.1 - 1 arcsec Gaia single measurement 0.1 - 1 mas

- Systematic survey down to 20 mag ~ 3×10⁵ objects
 - Observations at high ecliptic latitudes and to within 45° from Sun \rightarrow exotic orbits
- Orbits : virtually all object observed x30 better than now
- Masses from close encounters ~ 100 masses expected
- Diameter for over 1000 asteroids : shape, density
- Photometric data in several bands : albedo, taxonomic classification
- Light curves over 5 years : rotation, pole, shape
- Space distribution vs. physical properties
- Perihelion precession for 300 planets : GR testing, solar J2

Exo-planet search

Reference Frames

- Dense (> 1500 stars /deg²) net of reference stars
 - Direct observations of extragalactic sources
 - ~ 500,000 quasars observable
 - kinematically non-rotating system (~0.3 muas/yr)
 - acceleration of the Solar System Barycentre in cosmological frame
 - Long-lived reference system:
 - based on a clean subset ~ 20,000 QSOs V < 18
 - 18 mag positions good to <1 mas over 1995 2035
- QSO physics
 - largest homogeneous survey to V ~ 20
 - Investigation of transverse motion to 20 muas/yr (individual), <1muas/yr (systematic)

More information: August 2012

- Easy to imagine
- But one have to look at km basis interferometers
 to explore radius of stars on top of HR diagram of clusters

• Plato will take benefits of the Gaia catalogue

Focal Plane Assembly

Outline

- Gaia: Present status
- Data Analysis
- Science with Gaia
 - stellar and galactic physics
 - solar system
 - exo-planets survey
 - reference frame
 - fundamental physics

From U. Munari

MARCIN: ALL'N DETININATION