JWST and the ELTs: An Ideal Combination ESA/ESO Workshop, Garching, April 13-16, 2010

star clusters: future generation of diagnostic tools from high resolution (spatial & spectral) IR observations

Livia Origlia

INAF - Osservatorio Astronomico di Bologna, Italy

livia.origlia@oabo.inaf.it

valuable tools for theoretical and observational astronomy across a wide range of disciplines from cosmology to stellar evolution & dynamics

easily observable in external galaxies out to large distances

major star-forming episodes in galaxies accompanied by significant cluster formation

star clusters stellar populations & metal content strictly connected with those of their host galaxies

important witnesses of the epoch and homogeneity of cosmic reionization, and of the role of dark matter in the formation of structures in the early Universe

see e.g. Brodie & Strader 2006, ARA&A 44, 193

all canonical evolutionary sequences → pre-MS & MS down to the H-burning limit SGB, RGB, HB and AGB post-AGB and WD cooling sequence stellar evolution, chemical enrichment & nucleo-synthesis

exotic objects >

blue straggler stars, cataclysmic variables, milli-second pulsars, intermediate mass BHs (?)

stellar dynamics, binary evolution, environment

with the current generation of telescopes/instruments \rightarrow evolved stellar populations of star clusters

HST & 8-10m ground based telescopes at their limit.... in terms of sensitivity:

HST-ACS: photometry down to the MS turn-off of old GCs out to ~ M31

HST-ACS: photometry down to the MS turn-off of old GCs out to ~ M31

pixel: 30 mas integration time: 39hrs in F606W & 45hrs in F814W

Brown etal 2003;2004

HST & 8-10m ground based telescopes at their limit....

in terms of sensitivity:

✓HST-ACS: photometry down to the MS turn-off of old GCs out to ~ M31

✓nearIR AO+VLT/Keck & HST: photometry down to the MS turn-off of Bulge GCs

HST & 8-10m ground based telescopes at their limit....

in terms of sensitivity:

HST-ACS: photometry down to the MS turn-off of old GCs out to ~ M31
 nearIR AO+VLT/Keck & WF3: photometry down to the MS turn-off of Bulge GCs
 medium-high resolution spectroscopy of giant stars in the Galactic Bulge GCs

✓ medium-high resolution spectroscopy of giant stars in Galactic Bulge GCs

Terzan 5: remnant of a primordial building block in the Bulge

HST-WFC3

VLT-MAD

Keck - NIRSPEC

Ferraro etal 2009, Nature, 462, 483

HST & 8-10m ground based telescopes at their limit....

in terms of sensitivity:

HST-ACS: photometry down to the MS turn-off of old GCs out to ~ M31
 nearIR AO+VLT/Keck & WF3: photometry down to the MS turn-off of Bulge GCs
 medium-high resolution spectroscopy of giant stars in the Galactic Bulge GCs
 low-medium resolution spectroscopy of MS stars in Galactic Halo GCs

Iow-medium resolution spectroscopy of MS stars in Galactic Halo GCs

M71: Keck-HIRES

Intensity

Norm.

ω Cen: VLT-FORS

VLT

UVES

medium-high resolution spectroscopy of giant stars in the MC GCs

HST & 8-10m ground based telescopes at their limit....

in terms of sensitivity:

HST-ACS: photometry down to the MS turn-off of old GCs out to ~ M31
 nearIR AO+VLT/Keck & WF3: photometry down to the MS turn-off of Bulge GCs
 medium-high resolution spectroscopy of giant stars in the Galactic Bulge GCs
 low resolution spectroscopy of MS stars in Galactic Halo GCs

in terms of spatial resolution:

prohibitive crowding in the core (~central parsec(s)) even in most Galactic GCs
 stars not resolved out of the LG, even in the outer regions

star clusters - exotic objects Galactic GCs host 50% of the known MSPs

the MSP re-cycling scenario: binary system with a NS spun up by mass accretion from an evolving companion \rightarrow new born MSP + core of a peeled star which lost most of its envelope

NGC 6266 - UVES@VLT spectroscopy

Ferraro etal 2002

star clusters - exotic objects

IMBHs detections

high-resolution photometry & kinematics + detailed dynamical modeling

to date: 2x10⁴ M_o BH in G1 in M31

from density profile, velocity dispersion profile, specific dynamical models (Gebhardt et al. 2005), X-ray emission (Pooley & Rappaport 2006), radio emission (Ulvestad et al. 2007)

+ temptative suggestions for:

M15 from density & velocity dispersion profiles (Newell et al. 1976; ... Bash et al. 2007; MBH ~ few 10³ M_o)

NGC 6752 from anomalous position of MSP (Colpi et al. 2003; $M_{BH} \sim \text{few } 10^2 \text{ M}_{o}$)

47Tuc from velocity dispersion profile (McLaughlin et al. 2006; MBH = 900 ± 900 Mo)

NGC 2808, M80, M13, M62, M54, NGC 6388

from inner slope of density profile (Noyola & Gebhardt 2006; Miocchi 2007; MBH ~10² - 4×10³ M_o)

star clusters - exotic objects

IMBH signatures

NGC6388: c=1.8; $r_c=0.5pc (=7.2")$, D=13.2 kpc MBH~6x10³ M₀ $r_h=0.07 pc (=1.1")$ Lanzoni etal 2007, ApJ, 668, L139

super star clusters

NGC 1569 ~2 Mpc NICMOS@HST

NGC 6946 ~6 Mpc WPC2@HST

unique tracers of the IMF in SB galaxies

KeckII NIRSPEC spectra chemical abundances dynamical masses (σ~10 km/s, M_{dyn}~10⁶ M_o)

Larsen, Origlia, Brodie & Gallagher, 2006, 2007

...future science with the next generation of high spatial & spectral resolution telescopes/instruments...

H-burning limit in Galactic GCs \rightarrow multiple MS, present day MFs

JWST 6.5m FWHM_H~50mas NIRCam photometry H_{lim}~27

turn-off out to the $LG \rightarrow age$

E-ELT 42m FWHM_H~8mas

MICADO photometry H_{lim}~27 cores of Galactic GCs individual bright giants in the outer region out to ~Virgo

also IRIS/WIRC on TMT & HRCAM on GMT...

star clusters - chemistry

E-ELT 42m FWHM_H~8mas individual star spectroscopy

SIMPLE R=100,000 H_{lim}~20 OH,CO,CN lines, many atomic lines Fe,CNO+isotopes,α & other metal abundances

also NIRES on TMT & NIRS on GMT...

SGB-MS stars out to MCs

M31-G1

evolved giants out to 1~Mpc

 SINFONI: V_{rad} for ~70 stars at K<16 within 3.2"x3.2" → σ profile in radial bins of 0.5"-1.0"

 HARMONI: V_{rad} for ~10³ stars at K~20 → σ profile in radial bins of 50-100mas

 VLT+AO,HST → JWST,MICADO imaging: proper motions
 extragalactic star clusters E-ELT 42m FWHM_H~8mas integrated spectroscopy HARMONI R=20,000 H_{lim}~22 $\Delta v \approx 15$ km/s, $\sigma_{int} \approx 6.4$ km/s $M_{dyn} > 10^5 M_{o} \rightarrow very massive GCs$ SIMPLE R=100,000 H_{lim}~20 $\Delta v \cong 3 \text{ km/s}, \sigma_{\text{int}} \cong 1.3 \text{ km/s}$ $M_{dyn} \cong a \text{ few } 10^4 M_o \rightarrow Magellanic-like GCs$ Fe, CNO, α & other metal abundances

E-ELT 42m FWHM_H~8mas integrated spectroscopy SIMPLE R=100,000 H_{lim}~20 in 50mas spatial bins

extragalactic star clusters

 $\Delta v \cong 3 \text{ km/s}, \sigma_{\text{int}} \cong 1.3 \text{ km/s}$

star clusters - CS envelopes/disks

winds & mass loss affect all the stellar evolutionary stages \rightarrow CS envelopes/disks in

pre-MS stars evolved giants massive, young stars

JWST MIRI E-ELT METIS

crucial to characterize the physics & chemistry of CS disks/envelopes in star clusters of any age with major impact on stellar evolution modeling