

Hugo Messias Observatório Astromómico de Lisboa

Colour Selection of AGN (at High-z) with JWST

Credit: NASA E/PO, Sonoma State University, Aurore Simonnet

Supervisor: José Afonso (OALisboa, POR)

Collaborators: Mara Salvato (IPP-Garching, GER), Bahram Mobasher (UCRiverside, USA)

2010/04

Outline My 18±2 minutes...

State of the art

Caveats and Goals IR emission IR AGN selection

Working at high-z today

Why (not) MIPS-24um beyond $z\sim3$?

A broader view

Beyond z~1 How to reject low-z SF systems?

Test (control samples)

X-rays (CDFS and XMM-COSMOS)
Optical Spectroscopy (GOODS-S and XMM-COSMOS)
SDSS QSO DR7
High-z Radio Galaxies

JWST

Filling the 8-24um gap

Caveats and Goals

Aiming to the best possible

Caveats

No AGN criterion is perfect and complete, whatever the wavelength regime! Better combine criteria! But even better if a good one is achieved through a single observation facility.

Know your input catalog (basic properties: flux range, time of observations [variability], etc...) and only then chose which criteria to use!

We work with what we have **today**, (local) models used and small high-z statistics might trick us (e.g.: Narayanan et al.2010);

Goals

An AGN selection criterion preferably using the broad JWST wavelength range (1-25um), but quick and easy (3 to 4 bands);

Efficient over a wide redshift range and to low flux densities;

Sensitive to a variety of AGN scenarios.

Spotting an AGN

IR Colour-Colour criteria

[5.8] - [8.0] (Vega)

[3.6]

0

Pros

Easy criteria to use requiring 4 bands (2 colours); Recover many of the AGN unseen in Optical and shallow/soft X-ray surveys (Lacy et al.2004/2007, Stern et al.2005, Donley et al.2008);

Cons

-0.5

3

Created based on MIR shallow surveys and in a short wavelength range (3-8um, SpitzerST-IRAC);

Contaminated not only at high-z (z>3) but at low-z (Donley et al.2008);

Miss some highly obscured and/or less active AGN (Donley et al.2008, Eckart et al.2010);

Adjacent/close bands require smaller photometric errors.

Spotting an AGN IR Colour-Colour criteria

Colour-Colour tracks of models from Polletta et al.2007, Rieke et al.2008, Salvato et al.2009, on Lacy et al.2004/2007 region. Cyan, green and magenta data points are M, L, and T dwarfs, respectively.

Spotting an AGN IR Colour-Colour criteria Early/Late (a) (a) (b) Starburst (b) 0.5 Hybrid (c) (d) **AGN** 0 [3.6]-[4.5] (AB) 9.0 1.0 9.0 • - z=0 x - z = 1- 1<z<3 - 3<z<7 (c) (d) 0 -0.50 [5.8]-[8.0] (AB)

Colour-Colour tracks of models from Polletta et al.2007, Rieke et al.2008, Salvato et al.2009, on Stern et al.2005 region. Cyan, green and magenta data points are M, L, and T dwarfs, respectively.

Spotting an AGN

1.0 000s x Flore Polletto Δ Doddi -0.4 -0.2 0.0 0.2 0.4 0.6

Figure 10 of Donley et al.2008. A few samples of IR-excess sources laid on Lacy et al.2004/2007 and Stern et al.2005 regions.

IR-Excess criteria

Pros

Some are simple requiring only 4 bands (2 colours);

Recover the extremely obscured AGN missed by Optical and shallow/soft X-ray surveys;

Some are efficient even to low-fluxes and low-activity.

Cons

Restricted to obscured AGN;

Some extremely obscured SF dominated systems might comply with this type of criterion;

Those based in UV+IR SFRs (e.g.: Daddi et al.2007) are calibration and model dependent;

Need photometry out of the JWST spectrum range.

Spotting an AGN

Figure 10 of Donley et al.2008. A few samples of IR-excess sources laid on Lacy et al.2004/2007 and Stern et al.2005 regions.

IR-Excess criteria

Pros

Some are simple requiring only 4 bands (2 colours);

Recover the extremely obscured AGN missed by Optical and shallow/soft X-ray surveys;

Some are efficient even to low-fluxes and low-activity.

Cons

Restricted to obscured AGN;

Some extremely obscured SF dominated systems might comply with this type of criterion;

Those based in UV+IR SFRs (e.g.: Daddi et al.2007) are calibration and model dependent;

Need photometry out of the JWST spectrum range.

Working at High-z today

SWIRE Template Library (Polletta et al.2007): S0 (dotted red), M82 (continuous blue), type-1 QSO (black dotted-dashed line); IRAS 19254-7245 (magenta dashed line)

Why (not) MIPS-24um beyond $z\sim3$?

Why yes

At z>3, MIPS-24 stops probing the strong PAH features and 8um is starting to probe the peak of stellar emission;

It does help to separate Star-forming and AGN IR dominated systems.

Why not

Huge PSF and lack of sensitivity compared with IRAC channels;

Huge spectrum gap between 8.0um for IRAC and 24um from MIPS (!!in reality, at high-z the observed 8 and 24um gap translates into a smaller 2 to 6um rest-frame range).

Some previous works using colours with 24um: Lacy et al.2004, Fiore et al.2008, Polletta et al.2008, Garn et al.2009.

[Note that Ivison et al.2004, Pope et al.2008 although they present a colour-colour plot with 24um included, their criteria is actually only based in a 4.5-8.0 colour.]

Working at High-z today Why (not) MIPS-24um beyond $z\sim3$? Messias et al. 2010 Early/Late (a) (ApJ subm.) (a) (b) (b) Starburst Hybrid (c) 2 (d) AGN 0 • - z = 3[8.0]-[24] (AB) - 3<z<7 (c) (d)

2

0

-2

Colour-Colour tracks of models from Polletta et al.2007, Rieke et al.2008, Salvato et al.2009.

[4.5]-[8.0] (AB)

0

2

A broader view Beyond z~1 Early/Late **Proposed** (a) (a) Starburst (b) criterion Hybrid (c) 2 (d) AGN 0 • - z=1[8.0]-[24] (AB) $^{\blacktriangle}$ - z=3 -0 < z < 1- 1<z<7 (c) (d) 2 0 -2 0 0 [4.5]-[8.0] (AB)

Colour-Colour tracks of models from Polletta et al.2007, Rieke et al.2008, Salvato et al.2009.

A broader view How-to reject low-z SF systems? Early/Late (a) (b) (a) Starburst (b) 2 Hybrid (c) (d) **AGN** 0 • - z=0 $K_{g}-[4.5]$ (AB) x - z = 1.... - *z*<1 (c) (d) 0 -12 2 0 [4.5]-[8.0] (AB)

Colour-Colour tracks of models from Polletta et al.2007, Rieke et al.2008, Salvato et al.2009. Cyan, green and magenta data points are M, L, and T dwarfs, respectively.

X-ray classified sample at z>1, from Luo et al.2010 (CDF-s) and Brusa et al.2010 (XMM-COSMOS, ApJ submitted).

The effect of applying a K-[4.5] cut. X-ray sample from Luo et al.2010 (CDF-s) and Brusa et al.2010 (XMM-COSMOS, ApJ submitted).

Test (control samples) Optical spectroscopy (CDF-S, MUSIC-2009)

All sources with a good quality spectra and a redshift estimate of z>1.

Test (control samples) SDSS QSO DR7: SWIRE/SCOSMOS

SDSS DR7 cross-correlated with the SWIRE/SCOSMOS fields. Some $z\sim6$ QSOs from Jiang et al.2006 were also added.

Test (control samples) High-z Radio Galaxies (z>1 and $L_{3GHz}>10^{26}W$ Hz⁻¹)

Seymour et al.2008 sample of High-z Radio Galaxies.

JWST Filling the 8-24um gap

NIRCam

Wavelength range 0.6-5um

MTKT			
Filter	λ(μm)	Δλ(μm)	Comment
F560W	5.6	1.2	Broad Band
F770W	7.7	2.2	
F1000W	10	2	Silicate, Broad Band
F1130W	11.3	0.7	PAH, Broad Band
F1280W	12.8	2.4	Broad Band
F1500W	15	3	Broad Band
F1800W	18	3	Silicate, Broad Band
F2100W	21	5	Broad Band
F2550W	25.5	4	Broad Band

Colour-Colour tracks of models from Polletta et al.2007, Rieke et al.2008, Salvato et al.2009. Assef et al.2010 also address this spectrum range but are reasonably incomplete at z>3-4.

Conclusions A bright future!

A simple criterion efficient at 1 < z < 7 (or more), requiring solely 3 bands (2 colours), likely to be improved with JWST online;

Works at z<1 by adding only one band (K, \sim 2um), which allows the track of AGN behaviour from the local to the distant Universe;

Sensitive to a wide variety of AGN properties;

ELTs will contribute a lot with high-resolution imaging and spectroscopic follow-ups of the selected samples.