Star formation in the Local Group

Guido De Marchi (ESA)

Nino Panagia (STScI), Martino Romaniello (ESO), Loredana Spezzi (ESA), Giacomo Beccari (ESA), Francesco Paresce (IASF-BO), Elena Sabbi (STScI), Morten Andersen (ESA), Marco Sirianni (ESA)

Pre Main Sequence: stellar childhood

Accretion from circumstellar disc

Accretion from circumstellar disc

• UV and optical continuum excess, from which Lacc can be derived

• Strong emission lines in infalling gas (e.g. review by Calvet et al. 2000) Log (L_{acc}) = Log (L_{H α}) + (1.72 ± 0.47) Log (L_{acc}) = (1.03 ± 0.16) Log (L_{Pa β}) + (2.8 ± 0.58) Log (L_{acc}) = (1.20 ± 0.21) Log (L_{Bry}) + (4.16 ± 0.86)

 All methods require spectroscopy, very laborious, hence only ~100 objects currently have measured L_{acc} and mass accretion rate

Accretion evolution with time

How about other galaxies?

- Most stars in the Universe formed at redshift z~2, when metallicity was lower, 1/3 - 1/10 solar, like in the nearby Magellanic Clouds, but ...
- Spectroscopy of individual stars in MCs hampered by crowding, VLT/Flames observations attempted, but limit is angular resolution
- New simple method combines broad- (V, I) and narrow-band (H_{α}) photometry and allows us to:
 - \checkmark identify all objects with H_a excess emission
- derive their accretion luminosity and mass accretion rates
- ✓ for hundreds of stars simultaneously!

(De Marchi, Panagia & Romaniello 2010; astro-ph: 1002.4864)

H_{α} photometry

Stars physical parameters

 H_α luminosity L_{Hα} gives accretion luminosity L_{acc} via relationship calibrated using spectroscopic data (e.g. Dahm 2008)

 $Log (L_{acc}) = Log (L_{H\alpha}) + (1.72 \pm 0.47)$

• Mass M_{\star} radius R_{\star} and age t_{\star} from PMS isochrones in HR diagram

• Free fall equation gives mass accretion rate M

$$L_{acc} \simeq \frac{GM_*\dot{M}}{R_*} \left(1 - \frac{R_*}{R_{in}}\right)$$

• We can study how star formation has proceeded in space and time

Accretion rates in the H-R diagram

Accretion rates in the H-R diagram

Low- and high-mass stars mismatch

Accretion evolution with time

Accretion evolution with time

Accretion evolution with time & mass

Accretion evolution with time & mass

Accretion rate and metallicity

Looking further ahead and farther away

- ELTs can extend this science further out in the local group, for example M31 & M33 in the North or NGC 3109 & Sextans A in the South (Z < Z_{SMC})
- Spatial resolution and sensitivity are crucial, so until AO available in the visible, PMS stars must be searched and studied with IR spectroscopy
- Typical cluster size, ~7.5 pc, corresponds to ~ 350 HST spatial resolution elements if in LMC and ~350 HARMONI resolution elements in Andromeda
- HARMONI high spatial resolution IFU with R~4000 is a good match, although reaching K=26 with SNR~5 requires about one night
- But if ExAO in H α band is possible (e.g. EPICS, IRIS), photometric detection of PMS stars via their H α excess emission would be much more efficient!