Astronomy at the End of the Dark Ages

Andrew Bunker (Oxford)



Early strategy:
most massive
short-lived OB
stars produce
ionizing UV
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measure UV flux
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recombination
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Kodaira et al.
(2003) z=6.58
Ly-alpha galaxy
(narrow-band)
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After era
probed by
WMAP the
Universe enters
the so-called
“dark ages”™
prior to
formation of
first stars

Hydrogen is
then re-ionized
by the newly-

formed stars

When did this
happen?

What did 1t?

What is the Reionization Era?
A Schematic Outline of the Cosmic History
< The Big Bang

Time since the
Big Bang (years)

The Universe filled
with ionized gas

~ 300 thousand < The Universe become
neutral and opaque

The Dark Ages start

Galaxies and Quasars
begin to form

~ 500 million The Reionization start

The Cosmic Renaissafice
The Dark Ages end

~ 1 billion " | «-Reionization complete
the Universe become

transparent again

Galaxies evolve

~ 9 billi
tion The Solar System forngs

~ 13 billion Today: Astronomers

i : o e figure it all out!
S.G. Djorgovski et al. & Digital Media Center, Caltech
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Recelved on earth, after
passing through IGM

\G R

6000 8000
Observed Wavelength (A)

4000

"Lyman break technique" - sharp drop 1n flux at A
below Ly-a. Steidel et al. have >1000 z~3 objects,
"drop" in U-band.



Stanway, Bunker & McMahon (2003 )
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Why are we bothering?

Want to find the sources which reionized the Universe, and chart the
history of galaxy (mass) assembly & star formation
Lyman-alpha (if it emerges at all pre-Gunn Peterson)
then it will be a good way to find galaxies, but the flux does not tell us
the star formation rate (but EW might provide clues to the IMF). Pop
[1177?7? Hints from Hell 1640Ang
Spectra at longer wavelengths for other diagnositc lines (also get
reddening, metallicity)

Couple with SEDs from imaging
Brightest sources: some hope of velocity dispersions
Want overall luminosity functions, EW distributions.

Evolution of size & morphology



Role of ELTs at the Highest Redshifts

Probably use deep JWST imaging fields (~3’x3’) to locate targets
ELT wins out for detailed studies of individual objects because of
better diffraction limit - matched to HII region size (HARMONI,
EAGLE).
IR MOS capability critical for multiplex (e.g. OPTIMOS)
IFU capability desirable, even better if several deployed over ~3’, for
best exploitation of target density (e.g. EAGLE). Resolution R>4000

Want to chart history of star formation;
History of mass assembly (IFUs);
History of metal enrichment.

Impact of galaxies on reionization,
and the evolution of feedback.

Nature of Pop III stars.



ACS pixels
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7, e
gc;i 1.0 [ 7~6 galaxies Lyman-break (just) resolved
"?n 0.8 with HST. Much more compact than
B L Lyman-break galaxies at z~3-4. Lyman-
o 0.6 alpha halos may be larger.
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Key is Spectroscopy with ELTs

‘We have samples of ~10/sq arcmin I-drop z~6 galaxies (in
HUDF to z’=29 AB) and larger shallower samples of bigger
fields (thanks to Subaru/SuprimeCam). HST/WFC3 at z>7/
- Only small fraction have spectroscopic redshift from
strong Ly-alpha

-Want to reach smaller equivalent widths (the distribution of
Ly-alpha tells us about the 1onization fraction of the IGM),
and want to reach the continuum

~-UV absorption lines and P-Cygni profiles will tell us about
mass/kinematics, metallicity, outflows and the IMF (the
work at z~3 from the Steidel group)

- OPTIMOS has ~200 multiplex. EAGLE for kinematics



Arbitrary Flux (DNs)

400

K[Fe )

1000

Sky "glow

NI TTT TR T

1.45

1.5

1.55

in th

1.8 1.8%

Wavalength (um)

near-IR

17

175

14




Understanding Galaxies at 2>~6

* How to find galaxies at z~6, and the incompleteness 1n the
selection methods (tend just to find actively star-forming

galaxies). Might look for signature of old stars.

e Spectroscopy does not reach the continuum (lucky if you get
one line - Lyman-alpha), so rely on fitting SEDs with broad-
band imaging (which may come from imaging with very
different spatial resolutions). Get SFR/ionization from rest-UV.

* Most high-redshift candidates have no spectroscopic redshift -

might be mis-led 1n stellar population fits by erroneous

photometric redshifts. But broad-band SEDs can tell us a lot.
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Limiting AB Magnitude in Z’
For I-drops (z~6) would only get ~1 per NIRSpec field
bright enough for S/N~3 in continuum in 1000sec for abs

line studies. ELT could go deeper at <2microns



Looking at the UDF ( gomg 10x deeper 7'=26 —28.5 mag)
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Star formation history of the Universe

Age of Universe (billion years) Redshift
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e UDF enables us to identify even fainter galaxies at these times (end of dark ages)
o We werefirstto analyse & publish 50 high redshift galaxies in the UDF

e Confirms our previous work: much LESS star formation than in more recent past




Probing the dark ages
reionization and distant galaxies

Universe at z~6 was very different from Next Generation
z~3: would predict 6x as many bright star Infrared JWST
! : N /
forming galaxies at z~6 than we see! optical NICMOS/WFC3 \
g boundary
Re:onlz?tlon. the UD{-' dqta has star HST/ACS L
formation at z=6 which is 3x less ’ 4
than that required! § -
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® Different physics of star formation
early on? (masses of stars)

® Undiscovered fainter sources (forming
globular clusters?)

e Starformation at even earlier times? First stars, earliest galaxies

reionization




Spitzer — IRAC (3.6-8.0 microns)



- z=5.83 galaxy #1
from Stanway,
Bunker &

1 McMahon 2003
(spec conf from
Stanway et al.
2004, Dickinson
et al. 2004).
Detected in
GOODS IRAC
3-4um: Eyles,

: ! - ~ :: i ¥ 0 Bunker, Stanway
zband  iband | etal. 2005
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HST Survey Discovery Efficiency
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RECENT EXCITEMENT - 100 orbits of HST with
WFC3 in 3 near-IR filters on Hubble Ultra Deep Field.
Galaxies at z=7-9! Data taken last in last 7 months.

4 papers immediately (Bouwens et al., Bunker et al.,
McLure et al., Oesch et al.) and several more since.
Also Early Release Science - Wilkins et al. has analysed
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Bunker et al (2009) - HST/WFC3 near-IR 1maging of the HUDF
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The rest-UV slope at z~6
e In Stanway, McMahon & Bunker (2005) we used the
NICMOS J- and H-band images of the UDF to show that
the I-band drop-outs at z~6 had remarkably blue rest-UV
spectral slopes, f, o« AP, with p=-2.2 (compared to =-1.1

to -1.6 for the Lyman-break galaxies at z~3)

e Can use the full SED fits across the rest-UV and optical
with Spitzer to further explore evolution in the dust-
reddening (and potentially the IMF)
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Very blue colours - different IMF? No dust? Low metallicity?
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| JAMES WEBB SPACE TELESCOPE &
successor to Hubble (201 3+)
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1~ Ellis, McMahon
& McCarthy (2003)

Bunker, Stanway, }\rZS.S

“I" Keck/DEIMOS

o | spectral follow-up \ /m(
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. t1
[«drops in the Chandra Deep : WN | 711 ﬁ(
Field South with HST/ACS
Elizab‘eth Stanway, Andrew
Bunker, Richard McMahon
2003 (MNRAS)




Normalized Flux
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Absorption lines at z>5 - a single v.

bright Lyman break z=5.5 galaxy, Dow-
| Hygelund et al (2005), AB=23-24, VLT
 spectrum (22 hours), R~3000; S/N=3-10
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Continuum flux F, (nJy)
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Lyman-alpha Searches : JWST strategies

1) Follow-up Lyman break galaxies from
NIRCAM (J-drops @z=10, H-drops @z=15, K-

drops @z-20),
hope to get Ly-alpha with

NIRSPEC (perhaps even

continuum - maybe 1n QSOs only)

2) Use FGS tunable filter to get emission line

objects, and follow up wit

h R=1000-3000 to

determine 1f H-alpha/[OIIl

] etc at low-z, [OII] at

intermediate-z, or Ly-alpha at high-z
3) Slitless NIRSPEC survey (less sensitive than

FGS, but larger volume). Critical line mapping in

gravitational lenses?



flux

Emission lines = Star formation rates,
metallicity (oxygen, R,,), dust extinction (Ho/Hf3),

line widths/rot curves = kinematics/masses
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telescopes) tells us the
. effectiveness of ELT
o y will be multiplied if it
847 happens while JWST is
‘ running (2014 onwards
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Other Population Synthesis Models
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