On the validity of the $M_{\text{BH}}\text{-}\sigma$ relation

Enrico Maria Corsini

Università di Padova

In collaboration with:

A. Beifiori – Università di Padova/University of Oxford

F. Bertola – Università di Padova

L. Coccato – MPE

S. Courteau – University of Kingston

E. Dalla Bontà – Università di Padova

A. Pizzella - Università di Padova

M. Sarzi – University of Hertfordshire

Based on:

Beifiori et al. 2009, ApJ, 692, 856 Beifiori et al. in preparation

Introduction

- The mass M_{BH} of supermassive black holes has been measured in the center of about 50 nearby galaxies (Gultekin et al. 2009).
- Different scaling relations have been found between M_{BH} and the properties of the host galaxies, but their slope and scatter are still uncertain (e.g., Thomas, Gadotti, Gebhardt).
- There is a pressing need to acquire better M_{BH} statistics both in term of the number and of broadening the range of host galaxies.
- This will allow to constrain the mass-accretion history of black holes which drives their coevolution with the host galaxies (e.g. BHFP, Hopkins et al. 2007).

Upper limits on $M_{\mbox{\scriptsize BH}}$ from nebular lines

- AIM: Derive M_{BH} upper limits for the largest possible number of galaxies by measuring their gas kinematics in HST archival data.
- SELECTION CRITERIA:
 - nearby galaxies (D<100 Mpc).
 - STIS/G750M nuclear spectra (slit width 0.1").
 - Hα, [NII]6548,<mark>6583Å</mark>, [SII]6716,6731Å.
 - available stellar velocity dispersion.
- SAMPLE:
 - 105 galaxies (out of 177).
 - 26% E, 20% S0, 54% Sa-Sc.
 - $-60 < \sigma < 420$ km/s (18% $\sigma < 100$ km/s)
 - homogeneous measurements of the central emission-line width

Ionized-gas kinematics in galactic nuclei

а unsharp masking acquisition image dust (and gas) disk slits Ē 1" [N II] [NII] λ6583Å 6600 (6583) Hα λ6563Å NGC 4435 ≤ 6580 Hα [NII] λ6548Å [N II] (6548) 6560 [ku/s] 1050 d 900 / ku/s 750 . V [km/s] $H\alpha \lambda 6563 Å$ Coccato et al. (2006) σ kinematics [V.U.] Flux V [NII] λ6583Å [km/s] σ . Alter Stand 2 States kinematics Flux [A.U.] Flux 3 - 3 -2 -1 0 R [arcsec] -3 -2 -1 o 2 2 3 - 3-2 R [arcsec] R [arcsec]

Modeling the width of the nebular lines

- Line broadening from gas in Keplerian motion onto circular obits in a thin disk with
 - unknown inclination ($i = 33^{\circ}, 81^{\circ}$)
 - unknown position angle (squared apertures)
 - intrinsic emissivity with a Gaussian radial profile (conservative)
 under the influence of the putative BH disregarding
 - stellar contribution (~15% for i = 33° at 21.4 Mpc)
 - non-gravitational forces
- These are upper limits on the BH mass because
 - velocity gradient is not resolved within the aperture
 - stellar contribution and non-gravitational forces are neglected

The M_{BH} - σ relation: distance

The M_{BH} - σ relation: morphology

Relationships between M_{BH} and host galaxy properties

- AIM: Search for fundamental correlation between M_{BH} and bulge (σ , $L_{i,bulge}$, M_{bulge} , n) or galaxy parameters (V_c , $L_{i,gal}$, $M_{*,gal}$, M_{gal})
- SAMPLE:
 - 105 M_{BH} upper limits from Beifiori et al. (2009)
 - 49 secure M_{BH} + 5 M_{BH} upper limits from Gultekin et al. (2009)
- BULGE AND GALAXY PROPERTIES:
 - SDSS g- and i-band images
 - aperture photometry to derive $L_{i, gal}$, $r_{e, gal}$, $r_{24.5}$, $C_{28, g-i}$
 - 2D photometric decomposition to derive $L_{i, \text{ bulge}}$, $r_{e, \text{ bulge}}$, $n, <I_e >$
 - V_c and σ from literature

The M_{BH} - σ relation

Beifiori et al. (in prep.)

M_{BH} and bulge: linear combinations

Beifiori et al. (in prep.)

Conclusions

- We measured the M_{BH} upper limits in 105 nearby galaxies from the width of nuclear nebular lines in HST/STIS spectra
 - upper limits run parallel and above the M_{BH} - σ relation
 - line widths trace well the nuclear gravitational potential
 - no systematic trend with distance, Hubble type, and bar presence
 - upper limits can be adopted to study M_{BH} scaling relations
- We combined M_{BH} upper limits and secure M_{BH} with kinematical (from literature) and photometric properties (from SDSS images) of the host galaxies to study M_{BH} scaling relations
 - M_{BH} σ is the tightest relation for all the sampled Hubble types
 - BHFP is fundamentally driven by σ