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What I'm about to say...What I'm about to say...

● If we are to understand how galaxies form, then we need to understand how 
feedback works. 

● Challenging, but AGN feedback can provide important clues.

● AGN feedback must be momentum-conserving, at least initially. 

● Could explain the observed MBH-σ relation...

● Problem of AGN feeding equally challenging...

●  Need to account for angular momentum of accretion flow...

● Competition between black hole growth and star formation... 

● BHs lose out in low-mass galaxies. 

● Stellar feedback can be more important than AGN feedback...

– Origin of the MBH-Mspheroid relation?



  

  Why is AGN fWhy is AGN feedback important?eedback important?  

● Understanding feedback is crucial 
if we are to understand galaxy 
formation and evolution.

● Expect AGN feedback to be 
important in massive galaxies.

● Accretion onto BHs most efficient 
way to extract rest mass energy 
from matter.

● Helps to “fix” the luminosity 
function (e.g. Croton et al. 2006, 
Bower et al. 2006) 

● Provides a natural explanation for 
the observed M-σ relation (e.g 
King 2005, Murray et al. 2005).

Croton et al. (2006)

Gultekin 2009



  

  How doesHow does AGN feeding/f AGN feeding/feedback work?eedback work?  

● Matter accretes onto BH and 
fraction (~10%) of rest mass 
energy radiated away.

● Couples to gas in in vicinity of 
black hole and changes its thermo-
dynamical state.

● Regulates accretion rate and 
radiated luminosity.

              BUT...
● We don't really understood how 

this works, 

● Challenging problem – must model 
processes on Mpc → sub-pc scales.



  

Modelling AGN Feeding & Feedback Modelling AGN Feeding & Feedback 

● Galaxy formation simulations follow 
the coevolution of SMBHs and their 
host galaxies from high redshifts to the 
present day in a cosmological setting 
(e.g. Di Matteo et al. 2008)

● Simple models for AGN feeding and 
feedback – Bondi-Hoyle “capture” and 
thermal feedback (e.g. Springel et al. 
2005, Booth & Schaye 2009) 

● Simulations reproduce, for example, 
the MBH-σ relation (e.g. Di Matteo et 
al. 2008)

                 BUT... 

● Do these models really tell us 
anything useful?

 

From Di Matteo et al. 2005
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Analytical Models of AGN Feedback I Analytical Models of AGN Feedback I 

● Silk & Rees (1998) considered impact of quasar outflows at high redshifts on 
star formation in their host galaxies.

● Quasars heat gas in their immediate surrounding; excess thermal pressure 
drives an outflow, sweeping up a shell of gas as it expands.

● Once velocity of shell exceeds escape velocity, it's driven out of the potential 
and growth of SMBH powering AGN is shut down; this happens for   

where γ≈1 – see their equation 1.

● Template for galaxy formation simulations (until recently).

● Problem 1. : Energy-conserving outflows are too efficient – scaling as σ5.

● Problem 2. : Cooling is efficient close to the galaxy – expect outflow to be 
momentum-conserving instead.



  

Momentum- vs Energy-Conserving OutflowsMomentum- vs Energy-Conserving Outflows

● If cooling time is short, shocked gas radiate its energy away and shock is 
isothermal → only ram pressure drives gentle expansion of shell.

● If not, shock is adiabatic → thermal pressure of shocked gas dwarfs ram 
pressure of outflow and accelerates expansion of the shell. 

● Note that a momentum-conserving outflow can become energy-conserving.  

● Wind from BH drives outflow, sweeps up surrounding gas.

● Is outflow momentum- or energy-conserving?

● If cooling time is short, shocked gas radiate its energy away and shock is 
isothermal → only ram pressure drives gentle expansion of shell.

● If not, shock is adiabatic → thermal pressure of shocked gas dwarfs ram 
pressure of outflow and accelerates expansion of the shell. 

● Distinction important for understanding the origin of the 



  

Analytical Models of AGN Feedback II Analytical Models of AGN Feedback II 

● King (2003, 2005) and Murray et al. (2005) have shown that momentum-
conserving outflows from AGN can recover a MBH-σ relation consistent with 
data. 

● If AGN luminosity is Eddington limited, then the momentum flux of outflow is

● Equation of motion of a swept up shell of gas can be written as

where

                                              

                                      (1) King, 2003, ApJL, 596, 27; (2) King, 2005, ApJL, 635, 121  



  

Analytical Models of AGN Feedback III Analytical Models of AGN Feedback III 

● King assumes that SMBH is supplied with mass at super-Eddington rates; 
material surrounding SMBH is Compton thick (i.e. electron scattering) and so 
absorbs the momentum of the radiated luminosity of the AGN, with τ~1. 

● Below Mσ  mass, shell of swept up gas is driven outwards initially but has 
insufficient momentum to escape – and falls back onto the SMBH.

● At Mσ  mass, shell stalls until SMBH grows sufficiently to start accelerating it 
outwards (vshell ≈vesc); at a certain radius (<1 kpc for a typical galaxy) outflow 
becomes energy-conserving, shell accelerates rapidly outwards (vshell >>vesc).

● Implication 1 : The Mσ  mass is a limiting mass, reflecting the depth of the 
potential well in which the SMBH sits; MBH-σ points can lie below the relation, 
but not too much above it.

●Implication 2 : Luminous AGN with high Eddington ratios are laggards – 
SMBHs with masses below their Mσ  mass.

                                                                       



  

Numerical Models of AGN Feedback Numerical Models of AGN Feedback 

● Analytical models provide useful 
insights -- but they are idealised and 
require simplifying assumptions to be 
made – need numerical simulations!

● Apply RHD module embedded in 
Volker Springel's GADGET code 
(Nayakshin, Cha & Hobbs 2009) 
which we use to model an AGN 
“wind” (Nayakshin & Power 2010).

●  Run simple idealised models first 
before applying to e.g. galaxy merger 
simulations (in progress!!!).

(1) Nayakshin, Cha & Hobbs, 2009, 
MNRAS, 397, 1314; (2) Nayakshin & Power, 
2010, MNRAS, 402, 789 

                                                              
         

From Power & Nayakshin, in prep



  

Numerical Model of BH Outflows Numerical Model of BH Outflows 

● Look at spherically symmetric 
shells of gas falling onto a central 
BH in an isothermal potential.

● Assume that BH is growing and 
radiating at its Eddington limit – 
doubles in mass every ~30 Myrs.

● Shell falls from rest at 40 kpc, 
freefall time ~250 Myrs.

● BH grows sufficiently quickly to 
reverse infall of shell and drive it 
out of potential.

● Simulations and analytical model 
in excellent agreement!

From Nayakshin & Power 2010
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When Feedback Fails... IWhen Feedback Fails... I

● Shell falls from rest at 10 kpc, 
freefall time ~60 Myrs.

● More massive initial BH mass, but 
it cannot grow quickly enough to 
prevent shell falling to centre.

● If star formation timescale short, 
star formation favoured over BH 
growth.

● Stellar wind feedback drives gas 
away.

● “Competitive feedback” – see 
below.

From Nayakshin & Power 2009



  

When Feedback Fails... IIWhen Feedback Fails... II

● As before, but shell rotates about z-
axis.

● No feedback – settles into a disc.

● Feedback – gas expelled along z-
axis, but high column density gas 
in disc difficult to get rid of.

● Problem – no obvious way to shut 
down its growth, no obvious 
limiting mass.

              BUT...

● Feedback independent of accretion 
rate – unrealistic.  

From Nayakshin & Power 2009
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Modelling AGN Feeding Modelling AGN Feeding 

● Want to tie AGN feedback to AGN feeding – range of scales is a problem!

● How do we relate accretion rate onto SMBH on sub-parsec scales to properties 
of accretion flow at 100 pc? 1 kpc? 10 kpc? (e.g Thompson et al. 2005, Hopkins 
& Quataert 2009) 

● Need to distill complex physical picture into a simple estimator...

● Most popular approach has been to use Bondi-Hoyle “capture” (e.g. Springel et 
al. 2005, Booth & Schaye 2009)

but this is very unsatisfactory...

● Problem 1 : BH is embedded in the potential of a galaxy and its dark matter 
halo; boundary conditions non-trivial (Hobbs, Power et al., in prep)

● Problem 2 : Angular momentum is an efficient barrier to accretion – Bondi-
Hoyle cannot account for this.

                                                                       



  

Accretion Disc Particle Approach Accretion Disc Particle Approach 

● Extension of sink particle method of Bate et al. (1995) – particle only 
accreted if angular momentum is sufficiently small.

● Adds to mass of accretion disc, BH fed on viscous timescale.

● Feedback proportional to accretion rate – Eddington limited.

                                      Power, Nayakshin & King, 2010, astro-ph:arxiv:1003.0605

From Power, Nayakshin & King 2010



  

Angular Momentum is Important Angular Momentum is Important 

From Power, Nayakshin & King 2010

● Compare ADP and Bondi-Hoyle 
capture estimates.

● Simple example : rotating shell of 
gas in isothermal potential with a 
SMBH embedded in the centre.

● Gas should settle into a thin 
rotationally supported disc in 
absence of any feedback.

● Choose MBH ~106 M○.

● Feedback modelled as momentum-
conserving outflow (Nayakshin & 
Power 2010).
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Early Times : Bondi-Hoyle Early Times : Bondi-Hoyle 

From Power, Nayakshin & King 2010



  

Late Times : Bondi-Hoyle Late Times : Bondi-Hoyle 

From Power, Nayakshin & King 2010



  

Late Times & Large Scales : Bondi-Hoyle Late Times & Large Scales : Bondi-Hoyle 

From Power, Nayakshin & King 2010



  

Stellar FeedbackStellar Feedback



  

Competitive Feedback Competitive Feedback 

● Black holes grow on a Salpeter timescale, 

● Star form on roughly a dynamical timescale,

                  

● The Salpeter timescale is a constant whereas the dynamical timescale is not; 
so in lower-σ galaxies the dynamical timescale can be much shorter than the 
Salpeter timescale and star formation is favoured over black hole growth.

● Feedback from young massive stars is much the same as feedack from a 
black hole, albeit with a lower efficiency – gas is blown away.

● Expect black holes in lower-σ galaxies to be undernourished.

                             Nayakshin, Wilkinson & King 2009, MNRAS, 398, 54  



  

Competitive Feedback in Action? Competitive Feedback in Action? 

From Graham & Spitler 2009



  

Feedback & the MFeedback & the MNCNC--σσ Relation Relation

● Young massive stars produce feedback at roughly their Eddington rate.

● Implies that a MNC-σ relation should exist...

McLaughlin, King & Nayakshin, 
2006, ApJL, 650, 37

Ferrarese et al. 2006



  

Feedback & the MFeedback & the MBHBH-M-Mbulgebulge Relation Relation

● What determines Mbulge? Why should MBH~ 0.001 Mbulge?

● Look at stellar feedback from the bulge; while MBH is below its characteristic 
Mσ  value, the SMBH has little influence on its host galaxy. 

● Stellar feedback limits the mass of stars that can form in situ;

 

● Once the SMBH reaches its  Mσ value, it can expel any remaining gas from the 
bulge; this gives

● Requires a feedback efficiency η~0.3 – 0.5 to observational estimate (~1.6 x 
10-3 )  – which implies that the bulge mass cannot be limited by stellar feedback 
alone.

                                  Power, Zubovas, Nayakshin & King 2010, Submitted to MNRAS 



  

Future WorkFuture Work

● Simulations of competitive feedback 
in action; model growth of MBH, star 
formation and stellar feedback 
simultaneously.

● Galaxy merger simulations & SMBH 
feeding (a la Hopkins & Quataert 
2009).

● Cosmological galaxy formation 
simulations.

                                                              
         

Power, Hobbs & Read, in prep



  

What I've said...What I've said...

● Developing physically motivated models for BH feeding and feedback based 
on a “first principles” approach.

● Momentum-driven feedback predicts a limiting BH mass in agreement with 
observed M-σ relation.

●Angular momentum of gas provides a natural barrier to accretion... 

– Motivation for our “accretion disc particle” method.

– Only lowest-angular momentum can feed BH.

– Offset in M-σ relation in systems with high angular momenta?

● Expect competition between black hole growth and star formation... 

– BHs lose out in low-mass galaxies → nuclear star clusters.

– Expect a M-σ relation for star clusters.

● Stellar feedback important for bulge mass, but needs help from SMBH.
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