Impact of ionized gas outflows on the evolution of Seyfert galaxies

Francisco Müller Sánchez¹ A. Prieto¹ R. Davies² E. Hicks³ M. Malkan⁴

¹ Instituto de Astrofisica de Canarias, Spain
² Max Planck Institute for Extraterrestrial Physics, Germany
³ University of Washington, USA
⁴ University of California Los Angeles, USA

Ionization cone in NGC3281

Science Objectives

Using adaptive optics on Keck and the VLT to reach scales down to 0.075" in the K- band, we can for the first time directly resolve the NL- and CLRs of nearby active galaxies and investigate:

- Size and kinematics of the NLR and the CLR: prevalence of non-circular motions in their velocity fields and their nature as AGN-induced outflows

- Orientation effects invoked by the torus model of AGN and correlations
- Do AGN outflows actually deliver enough energy to their environments to alter the evolution of the host galaxy in a meaningful way?

The Nearby AGN Sample

<u>Object</u>	Classification	D (Mpc)	Resolution _	
NGC 1097**	LINER, Sy1	18	0.245"	21pc
NGC 2992	Sy1	33	0.30"	48pc
NGC 3227	Sy1	17	0.085"	7pc
NGC 3783	Sy1	42	0.18"	37pc
NGC 4945*	Starburst, Sy2	5	0.09"	2.5pc
NGC 7469	Sy1	66	0.085"	27pc
NGC 1068	Sy2	14	0.085"	6pc
Circinus	Sy2	4	0.22"	4pc
NGC 4051	Sy1	10	0.12"	5.8pc
NGC 4151	Sy1	14	0.11"	7.5pc
NGC 6814	Sy1	22	0.17"	18.2pc
NGC 7469	Sy1	66	0.11"	35.2pc

*No coronal lines **No coronal lines, no Brg emission

Integrated spectrum of Circinus

Coronal lines

Müller-Sanchez et al. 10

[SiVI]

R.A. offset (arcsec)

R.A. offset (arcsec)

[SiVI]

Stars vs Molecular Gas in NGC1068

Outflow in NGC1068

Spatial correlation between radio jet and ionized gas

Comparison to lonisation cones

position in 3D, colours indicate velocity, arrow is l.o.s.

Northern cone is in front of galaxy plane, southern cone behind; Blueshifted and redshifted velocities in both parts of the plane

Das et al. 06

NGC4151

Velocity tomography of [SiVI] in NGC4151

Outflow in NGC4151

-360 km/s

-0.6-0.4-0.2 0.0 0.2 0.4 0.6

0 km/s

-0.6-0.4-0.2 0.0 0.2 0.4 0.6

360 km/s

-0.6-0.4-0.2 0.0 0.2 0.4 0.6

-240 km/s

-0.6-0.4-0.2 0.0 0.2 0.4 0.6

120 km/s

-0.6-0.4-0.2 0.0 0.2 0.4 0.6

480 km/s

-0.6-0.4-0.2 0.0 0.2 0.4 0.6

-120 km/s

-0.6-0.4-0.2 0.0 0.2 0.4 0.6

240 km/s

-0.6-0.4-0.2 0.0 0.2 0.4 0.6

-0.6-0.4-0.2 0.0 0.2 0.4 0.6

Comparison to lonisation cones

Crenshaw et al. 10

NGC2992

NGC3783 and NGC6814

Mass outflow rates and Kinetic energy

 $M_{out} = 2n_e m_p AV(r) f \quad [M_{sun} yr^{-1}]$ $M_{accr} = L_{bol}/\eta c^2 \quad [M_{sun} yr^{-1}]$ $E_{kin} = M_{out}(v^2 + \sigma^2)/2 \quad [erg s^{-1}]$

<u>Object</u>	<u>D (pc)</u>	V(<i>r</i>)	Mout	Maccr	Ekin	Lbol
NGC 1068	70	1400	1	0.09	7x10 ⁴¹	8x10 ⁴⁴
NGC 2992*	40	200	0.07	0.02	0.2x10 ⁴¹	1x10 ⁴⁴
NGC 3783						
NGC 4151	100	600	2.4	0.01	2x10 ⁴¹	7x10 ⁴³
NGC 6814						

 E_{kin} = [0.007 – 0.003] L_{bol} which is a fraction of the order of the AGN feedback derived in simulations for co-evolution of BHs and galaxies (0.5% of L_{bol})

Di Matteo et al. 05

Conclusions

• For the AGN exhibiting coronal lines, the Brγ morphology is similar to the coronal lines

• The coronal line region is spatially coincident with the inner NLR. At larger scales the situation is different

 Radial motions dominate the velocity fields of coronal lines and in all cases they are well reproduced as an outlow

• There exist signatures of orientation effects favouring the torus model

• $E_{kin} = [0.007 - 0.003] L_{bol}$ which is a fraction of the order of the AGN feedback derived in simulations for co-evolution of BHs and galaxies (0.5% of L_{bol})

Preliminary results and current work

 \checkmark For the AGN exhibiting coronal lines, the Brg morphology is similar to the coronal lines

✓ Three cases are identified in Brg kinematics: rotation, perturbed rotation and radial motions

✓ Two AGN with coronal lines exhibit only radial motions in Brg (n1068 and n3783), one perturbed rotation (n2992) and one pure rotation (Circinus)
✓ There is clear structure in Brg dispersion (evidence for outflow?)
✓ Radial motions dominate the velocity fields of coronal lines (outflow for NGC1068 confirmed through velocity slices)

Measure sizes of narrow Brg and coronal line emitting regions

> Modeling of the Brg kinematics with a simple rotating disc and study residuals

Compare flux and dispersion maps with radio, [OIII] and X-ray data

Find clear transition between the AGN-excited NLR and the surrounding starforming areas (line ratios)

- > Map the two components of Circinus and NGC2992
- Biconical modeling of NGC1068 and NGC3783
- Look for any type of correlation
- Analyze new data
- What about BLR?

Examples of NLRs

Bennert et al. 06

AGN Paradigm

Open questions

Ionization mechanisms in Seyfert galaxies: collisionally ionized, gas is ionized in situ by photons generated in the hot shocked gas "photoionizing shock", or AGN photoionization? Contribution of stars?

Kinematics of the NLR, is the material in the ionization cone outflowing? Origin of the outflow: starburst-driven wind, collimated radio jet, thermal wind from the AGN?

Morphology and kinematics of the coronal lines, are they part of the NLR (ionization cone)? do they show signs of rotation? are there any correlations with other AGN-based phenomena?

Do AGN outflows actually deliver enough energy to their environments to alter the evolution of the host galaxy in a meaningful way? e.g. controlling star formation and accretion processes, thus regulating BH growth.

Bry

Bry

Bry

NGC7469

Molecular gas in AGN I

Conclusions

- The molecular hydrogen traced by the 1-0 S(1) line at 2.1 µm forms an optically and geometrically thick rotating disk.
- The size scale of the typical gas disk is found to have a radius less than 35 pc with a comparable vertical height
- The molecular gas observed is likely to be the outer extent of the nuclear obscuring structure
- The velocity dispersion is correlated with the SFR per unit area suggesting that the molecular/dusty structure on these scales may be dynamic. In such a case the fraction of viewing angles that pass through the obscuring region will depend not only on orientation, but also on the state of the nuclear starburst, with Sy2-AGN more likely to be observed during a phase of intense star formation
- NGC1068: massive inflow directly inwards to central few parsecs

Outflow biconical model

NGC3783

Kinematic model

 \bigcirc

NGC3783

