# Black holes in ultra-compact dwarf galaxies? Michael Hilker (ESO/Garching)



### No answer in this talk!

Main collaborators: M. Frank, S. Mieske, I. Misgeld (ESO), H. Baumgardt (U. of Queensland); A. Jordan, L. Infante (PUC/Chile)

# Characteristics of "Ultra-Compact Dwarf galaxies" (UCDs)

### <u>Ultra-compact dwarf galaxies</u>

| Luminosities:        | -13.5 <m<sub>v&lt;-11.0</m<sub>                        | (although $\omega$ Centauri (M <sub>V</sub> =-10.4) might be a small UCD) |
|----------------------|--------------------------------------------------------|---------------------------------------------------------------------------|
| Half-light radii:    | 5 <r<sub>h,p&lt;30 pc</r<sub>                          | (a few have LSB envelopes with 80 <r<sub>eff&lt;120 pc)</r<sub>           |
| Velocity dispersion: | 25<σ₀<45 km/s                                          | (extrapolated from the observed velocity dispersion)                      |
| Mass range:          | ≥2x10 <sup>6</sup> -10 <sup>8</sup> M <sub>⊙</sub>     | (dynamical mass)                                                          |
| M/L <sub>dyn</sub> : | 2-10                                                   | (different from the expected M/L of canonical stellar populations)        |
| Occurence:           | In cores of galaxy clusters or close to major galaxies |                                                                           |

# The top 4 formation scenarios for UCDs

"Threshing scenario (remnant nuclei)" (Bekki et al. 2001, 2003, Bassino et al. 1994, Zinnecker et al. 1988)

VS.

"Massive supercluster complexes" (Fellhauer & Kroupa 2002, 2005, Kroupa 1998)

VS.

# "Bright end of the normal GC luminosity function"

(Mieske et al. 2002, 2004)

VS.

### "Genuine compact dwarf galaxies"

(Phillipps et al. 2001, Drinkwater et al. 2004, Richtler et al. 2005)







A scenario in which a nuclear star cluster gets isolated by the tidal disruption of its parent galaxy in a galactic/cluster potential was proposed quite some time ago ...

- ... for the origin of ω Centauri: Zinnecker et al. (1988), Freeman (1993), Lee et al. (1999), Hilker & Richtler (2000), Bekki & Freeman (2003), ...
- ... for intra-cluster GCs in galaxy clusters: Bassino et al. (1994), Hilker, Infante & Richtler (1999), ...
- ... as a formation channel for UCDs: Hilker et al. (1999), Drinkwater et al. (2000), Bekki et al. (2001), ...





Dr. Michael Hilker (ESO/Garching

۰

## To be explained:

- Where are the transition types?
  UCDs with different envelope sizes are expected.
  Does it mean that the threshing process terminated long ago?
- Present day spatial distributions of dE,Ns and UCDs are quite different from each other.
   Does this point to a selective process, disrupting only dE,Ns that were more centrally concentrated?

### Needed:

 Self-consistent model of galaxy threshing in a CDM framework explaining the sizes and spatial and dynamical distribution of the present-day UCD population

# Similarities between UCDs and nuclear star clusters





Mass-surface density relations



#### Dynamical mass-to-light ratio vs. mass/luminosity

### CMD for massive GCs, UCDs, early-type galaxies and their nuclei



# Black holes in UCDs? What can be expected?



# Resolved internal kinematics of the most massive UCD In Fornax

### FLAMES/ARGUS IFU spectra of UCD3 in Fornax



analysed with the penalized pixel-fitting method from Cappellari & Emsellem (2004)

Frank et al. (2010, in prep.)



### Different realisations of spatial binning and the resulting maps

### Signature of rotation in UCD3



### Velocity dispersion profile vs. models



### Inner velocity dispersion profile vs. models



# The next step: AO observations with SINFONI

### Two massive UCDs in the Virgo cluster





Simulated velocity dispersion profiles for different BH masses

From top to bottom: ratio of BH to total mass: 10%, 3%, 1%, no BH

ESO proposal of P83

#### First SINFONI observations of M59cO in March 2010

040.0.1 134 171 228 90



### **Summary**

- UCDs are defined through their mass-size relation and enhanced dynamical mass-to-light ratios – roughly occurring at >2x10<sup>6</sup>M<sub>☉</sub>
- UCDs share many properties of nuclear star clusters, e.g. the mass-size relation, an elevated M/L ratio, etc., but also are the "tip of the iceberg" of rich globular cluster systems
  → they are a mixed bag of objects
- UCDs are mostly concentrated around major galaxies but also are found in the intra-cluster space, they do not follow the spatial distribution of nucleated dEs
- Resolving the internal kinematics of UCDs is very challenging, first attempts are underway
- So far there are no indications for black holes in UCDs
- UCDs are a nice scientific case for ELT observations

# Thank you!

Abundances and ages of GCs/UCDs in the Fornax cluster



High S/N VLT/FORS spectra of ~60 bright GCs/UCDs in Fornax



### The M/L<sub>dvn</sub> values of UCDs cannot be explained by SSP models